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FOREWORD

This report is submitted in partial fulfillment of the

final report, CDRL item A003, for the DAIS Mission Software,
F33615-75-C-1181. Intermetrics would like to express its

pleasure in participating in the DAIS effort. This cooper-

ative and evolving effort combined many industrial and govern-

mental participants. It has illustrated the ability of the

Air Force to respond in a timely fashion to the dynamic en-
vironment of modern technology. AFAL is to be congratulated

in their successful development and management of this pro-

gram.
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SECTION I.
INTRODUCTION AND SUMMARY

The Air Force Digital Avionic Information System (DAIS)

Program had as its object the design, development and speci-

fication of a standardized, modular, reliable digital avionics

system with easy maintainability and low life cycle costs.

The modularity concepts included both hardware modularity,

i.e., variable numbers of processors and subsystems, and

software modularity, i.e., mission dependent packages com-

posed of software building blocks. Central to the achieve-

ment of these architectural characteristics was the develop-

ment of an applications independent executive function which

could efficiently integrate the diverse hardware requirements

and applications software into a cohesive, efficient unit.

The executive software and the modular applications software

are collectively known as the DAIS Mission Software and are

the subject of this report.

As in any program of significant magnitude, the DAIS

program had the benefit of many elements and individuals

within the aerospace community. A few of the more signifi-

cant participants in the DAIS program and their contributions

to the efforts are given in Table 1. It should be noted

that the DAIS program has evolved during its active history

from 1973 to the present. It will undoubtedly continue its

evolutionary growth, lending significant contributions to

future avionics system concepts and designs.

The remaining sections of this report discuss some of

the more significant details of the DAIS Mission Software.

A general guide to the report is as follows:

1



Section 2.0 BACKGROUND - A general overview of the ante-

cedent software problems associated with avionics systems

and a brief description of the DAIS system hardware and soft-

ware environment.

Section 3.G DESIGN OBJECTIVES AND METHDOLOGY - A discussion

of the attendant framework of avionics system software

development problems and the design solutions that evolved.

Section 4.0 TECHNICAL DESIGN - A description of the details

of the technical design of the executive and application

software and their interaction.

Section 5.0 DEVELOPING A MISSION - A brief overview of the

production environment used to develop DAIS Mission Software.

Section 6.0 MISSION SOFTWARE ILLUSTRATIONS - An account of

the evolut onary growth of the DAIS Mission Software and

examples oC the attributes of the software design.

Section 7.) CONCLUSIONS AND RECOMMENDATIONS

The DAIS Mission Software was programmed using the Higher

Order Language (HOL) JOVIAL J73/I in conjunction with modern

structured software techniques and relocatability concepts

derived from Higher Order Software (HOS) principles. The

results of this effort have been the successful development

and demonstration of the application software for two close

air support missions: one based on an A-7 aircraft and the

other on an A-10 aircraft. As part of this effort a real-

time interface between the applications software and the

executive software was specified. The resultant executive

software has been successfully used on the Single Seat

Attack program and forms the baseline for an Air Force

standardized Executive.

2



The success of the Mission Software effort shows the

applicability of both modern software techniques and inte-

grated design to digital avionics system applications.

Table 1. Program Contributors

organization Contribution

AFAL Program Management

Charles Stark Draper
Laboratory Design Consultants

Computer Sciences
Corporation JOVIAL J73/1 Compilers

General Dynamics Preliminary Design Study

Hughes Aircraft Company Controls and Displays

International Business
Machines Multiplex Equipment
Intermetrics Incorporated Mission Software

Texas Instruments Preliminary Design Study,
and Initial Hardware and
Software Specifications

The Boeing Company Initial Hardware and
Software Specifications

TRW System Integration and
Test Coordination

Westinghouse DAIS Processors: AN/AYK-15

3



SECTION II.
BAC KG ROUND

The Air Force has been increasingly concerned with the

rising costs of developing and maintaining weapon systems.

A significant contributor to this rise in cost is the con-

tinuing development of unique and singular systems and soft-

ware designs for each specific application. In countering

this trend, the Air Force has applied both technical and

managerial techniques to stop the need for this proliferation.

The problem stems from the fact that the role of digital

computers in new weapon systems continues to expand. Even

today weapon systems of similar processing requirements

possess widely differing computer system designs, differing

software tools and philosophy, and correspondingly different

support tools and requirements.

one of the rmure important programs directed toward a

solution to this problem is the Digital Avionics information

System (DAIS). The DAIS program has been an ongoing effort

at the Air Force Avionics Laboratory (AFAL) since 1973 to

develop tools and techniques for producing reliable, effec-

tive systems with more desirable attributes than previously

available. It has developed from a conceptual phase through

a design phase to an actual implementation of a system with-

out the high life cycle costs of previous designs. The

current implementation is scheduled to be refined and then

to be transitioned to the production environment of the

Aeronautical Systems Division (ASD).

The Air Force DAIS Program has been concerned with long

term life cycle cost issues for avionics, and has addressed

them within the context of currently available technology.

DAIS has systematically integrated and applied modern tech-

nology an(' techniques to T he avionics problem. Significant

among the technologies incorporated in DAIS are the use of

4



the MIL-STD-1553A multiplexed data bus, a generalized feder-

ated computer system architecture for reliability and for

computational growth, the use of general purpose programmable

pilot displays, and the specification of modern software

engineering practices.

The DAIS program has successfully incorporated such

technologies and has demonstrated their applicability to

military avionics systems. The DAIS software has been imple-

mented in the HOL Jovial J73/I and structured according to

design standards devised for reliability, maintainability and

low life cycle costs. An important part of this development

has been the implementation of a DAIS Executive System which

minimizes the need for applications programmers to be con-

cerned with the details of multi-processing and I/O hardware

operation.

2.1 Avionics Software

In the long term, the software cost of an avionics system
is dominated by the modification of, additions to, and main-

tenance of the mission oriented application software, i.e.,

the Operational Flight Program (OFP) . Originallydigital

avionics processors were programmed in assembly language.

The resulting code was usually hand crafted to obtain the

desired performance characteristics. Modification of such

OFPs was difficult and costly and the addition of any new

feature often required both a major redesign and a compromise

to current features. Consequently, modern avionics systems

such as the Air Force B-i and F-16 programs specified the use

of the Higher Order Language (HOL) J3B for their avionic

systems. Similarly, NASA-selected the higher order language

HAL/S for programming the Space Shuttle. The use of a HOL

narrows the range of possible programming errors, and greatly

improves the comprehensibility and maintainability of the

resultant OFP. Additionally the use of a HOL frees the OFP

programmer from the specific characteristics of a given



target machine, making feasible initial code and development

and module testing on a general purpose computer. This

technique has the advantages of easier facility accessibi-

lity, earlier development, and the availability of more

extensive diagnostic tools for software development than

is usually (if at all) available with typical target military

computers.

one of the major achievements of the DAIS Mission Software

development effort has been the design, specification and

development of a standard avionics executive. The advantages

of standardization include the reduction of development errors

due to wider applicability (and thus legacy) , a reduction in

training and documentation costs and portability. The DAIS

executive has greater than usual flexibility for avionics

applicc:ions because it accomodates certain real-time func-

tional characteristics which are a common requirement, regard-

less of the particular missicn or aircraft. These real-time

characteristics typically are required to compute navigation,

qu ida nce, and weapon delivery information; to read and control

sensors and actuators; to communicate with the pilot via cock-

pit controls and displays; and to control both the periodic and

asynchronous execution of these functions. These functional

characteristics include real-time process interaction: initi-

ation of processes, repetitively, upon the occurence of some

event or at so~'e specific time; the conditional execution of

processes; the ability to monitor the real-time process itself;

and communication -with the actual I/O devices. It is this set

of real-time capabilities that the DAIS executive has success-

fully incorporated. A further refinement has been the imple-

mentation of these real-time executive services via the

JOVIAL DEFINE capability in a manner which appears to the

programmer as a language augmentation.



The DAIS executive and its interface to the application

software has been designed to afford L-oth straightforward

design and reliable modification of the application software.

This has in part been accomplished by raising the level of

the user's interface to the applications software. It makes

the application software invariant with respect to the

computer, the computer network, the I/O implementation, and

the implementation of the executive itself. This has been

done by creating a "logical" interface between the executive

and the application software: the process and 1/O control

has been represented by a well defined standard set of lan-

guage primitives. It has therefore become possible to develop

and maintain OFP software in a logical, application oriented

fashion, without the heretofore degenerating effect of system

dependencies. It has become feasible to achieve a common

standard across the total active fleet and to obtain benefits

with respect to personnel qualifications, training, documen-

tation, software support cost, and the sharing of expertise.

Careful attention has been paid to the structuring and

design of the application software in DAIS. Much of the

current interest in structured programming and other software

engineering techniques does not concern itself with real time

software, and most improved programming techniques are not

applicable to real time problems. Real time software has

severe performance and time constraints. It has introduced a

new dimension called "time". The DAIS Mission Software base-

line design was an outgrowth of research into Higher Order

Software (HOS). HOS was concerned with the application of

modern software design and structuring techniques to real-

time software. The adaptation of abstract H-10 concepts to

actual software practice was initially undertaken for DAIS

by the Charles S. Draper Laboratory. It was developed and

applied by Intermetrics to the design of the Mission Software.

This mapping of HOS concepts into software reality resulted

in the preliminary design for the DAIS Executive.
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2.2 DAIS Baseline

While DAIS has addressed avionics software development in

general, it necessarily consists of a specific set of elements

in its current implementation. The current system employs a

particular set of hardware, oriented to a specific aircraft

and mission, having a specific set of avionics equipment,

and is provided with specific software support elements.

2.2.1 DAIS Hardware

The elements of the DAIS hardware configuration which are

relevant to the Mission Software are the processors, the data

bus, the controls and displays systems, and the various inter-

facing equipment.

DAIS contains one or more AN/AYK-15 processors organized as
a federated system. One, two, and three processor systems

have been tested and demonstrated. Each processor within the

system possesses its own dedicated memory and executes a set

of prepartitioned software modules. Software processes in

different computers communicate over a common data bus inter-

connectinc all of the processors and all other system elements.

DAIS incorporates a dually redundant data bus based on

MIL-STD-1553A. DAIS has developed a detailed bus protocol

for its baseline implementation, although there is provision

for other (non-DAIS) protocols.

DAIS also incorporates a set of general and multi-purpose

programmable displays, which have undergone evolutionary changes

during the program. The current display system consists of

five CRT displays, switchable refresh memories, programmable

symbol generators, scan converters, and some dedicated instru-
ment displays. The particular set of Control and Display equip-

ment is not critical to either the functioning or design of the

DATS Mission Software.

. . .. .. ... ... .. ,. .. .. ...



2.2.2 The Basis for the DAIS Application

The present DAIS application calledMission Alpha (a), has

been modeled after the A-10 aircraft. While the current A-10

fleet aircraft has not been assigned a digital avionics system#

DAIS has specified sets of equipments consistent with the

Close Air Support Missions of the A-10. The original DAIS

Mission Software Application, called Mission A, was based upon

the A-7D but was later modified to its current A-10 configuration.

2.2.3 Software Test Stand (STS) and Integrated Test Bed (ITB)

The DAIS STS and ITB are combined hardware/software faci-

lities, consisting of both real and simulated equipments. The

ITB is the larger system and contains:

* actual DAIS AN/AYK-15 processors

" actual data bus system including Bus Control

Interface Units (BCIU) and Remote Terminals

" actual control and display equipment

" a cockpit simulator driven from the DAIS Hot

Bench which consists of a DECsystem-10 and a

number of PDP-lls used to simulate the environ-

ment, the aircraft, and various equipments

" other elements of hardware and software

required to simulate, buffer, record and

control the ITB system.

2.2.4 DAIS Software Elements

The primary software support tool developed by DAIS has

been the JOVIAL J73/I compiler hosted on the DECsystem-10

and targeted for the DECsystem-10 and the AN/AYK-15. The

AN/AYK-15 is supported by the DAIS ALAP assembler, DAIS

LINKS linker, and DAIS ASYTRAN loader.
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SECTION III.
DESIGN OBJECTIVES AND METHODOLOGY

The design objectives and methodology used to develop

the DAIS Mission Software were based on several different

concepts and techniques. Besides the use of the modern con-

cepts and techniques of structural programming and top-down

design, DAIS based its design principles upon additional

concepts espoused by the Higher Order Software (HOS) study.

Another aspect of the methods used involves the applicability

of HOS concepts to the JOVIAL J73/I language used by DAIS.

This mapping of abstract concepts into practice entailed

both specific development and modifications in detail of the

basic HOS principles. A third aspect of the DAIS design

objectives and methods was with respect to an efficient and

optimized software package oriented specifically to the

avionics environment in contra-distinction to a ground based

computer network. Finally, an extremely important aspect

of the DAIS design was the development of a set of software

standards to both communicate the design and control the

specific implementation. The human comprehension aspect of

a large software project can be never be neglected; proper

design and implementation cannot be accomplished if all the

individualls working on the project are not properly disci-

plined in a unified design approach.

3.1 Software Structure

One of the objectives of DAIS was to use the latest

software technology applied in a systematic and integrated

fashion in order to demonstrate its applicability to the

development of avionics systems. The DAIS Mission Software

baseline was established upon the research work performed

in Ifighur Order Software (110S) . This research was

10



concerned with the application of modern software design and

structuring techniques to real-time software. Software

engineering techniques do not usually address real-time

software problems and are not always applicable to real-

time problems. Real-time software has severe performance

and time constraints and introduces the new dimension

called time.

The application of abstract HOS concepts to actual

software practice was initially undertaken for DAIS by the

Charles S. Draper Laboratory. This mapping of HOS concepts

into practice formed the preliminary design for the DAIS

Executive. Conceptually, HOS principles try to remove real-

time problems as found in avionics software by enforcing

structured software standards on this set of problems.

The DAIS Mission Software design process can be viewed

as a three step process. The first step was the functional

breakdown of the mission requirements in a systematic top-

down fashion. This initial step provides a functional decomn-

position of the mission requirements into smaller, logically

complete and more detailed functional specifications.

The second step was to structurally reorganize these

functional specifications in a manner which would expose

real-time software problems and thus allow their solution.

The methodology was based upon the theoretical work collec-

tively known as Higher order Software. These rules require

a correlation of real-time criticality with priority struc-

ture and the creation of sequential modules in order to

structure response requirements. The benefits gained through

this discipline are:

*The removal of certain real-time problems by

means of structural definition (e.g., data

protection).
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*The comprehension of potential dynamic inter-

actions in a static fashion (e.g., through

planar tree graphs of the priority structure).

*The necessary hierarchy of the various functions

and their interactions (e.g., it exposes abso-

lute priority, shared data, required re-entrancy).

* Potentially, the deduction by static means of

various worst case situations (e.g., maximum
execution time).

The third step was to provide the Specification Design,

i.e., the detailed deisgn. It was extremely important to

differentiate between the Requirements and Specification

Design steps. Requirements Design was concerned with func-
tional operation, software structure, definition of control

and calculation modules, and identification of data inter-

faces and error conditions. Specification design addresses

th e 4implementation, taking into account the programming

language, e.g., JOVIAL J73/I, the details of the executive,

the avionics system configuration and the demands of effici-

ency. Here efficiency must be viewed within the context of

the total software development: execution time, memory

space, growth potential, maintainability and documentation

readability.

To the greatest degree possible, the DAIS Mission Soft-

ware was crganized in a hierarchical control tree structure.

All applications software consisted of either Controller or

Calculator functions. Every Calculator must be controlled

by a unique Controller. (Common service routines are excepted

in that they may be invoked from many program modules.) As

a requirerents design principle, control over modules conform

to this pirrticular hierarchy. A module, therefore, can only

invoke modules on its next lower level, not on the sami level,

and cannot invoke itself. Each mode (marked N in Figure .-1)

represent!: a Controller with a sequence, or choice, of functions

12
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Figure 1. Hierarchical Control Structure

13



it controls. Each Calculator module (marked C) represents

a data marnipulation function providing for no further control.

The control hierarchy implies a descending process pri-

ority in the sense that the local executive will preempt

lower priority processes in favor of pending processes of

higher priority.

In order to reduce the number of possible logic paths

and thereby facilitate the checkout and verifications of

DAIS mission Software, all modules (Controller and Calcula-

tor) were designed to be single purpose. That is, extran-

eous functions were not performed if the by-products were

not intended as an output. In addition, multi-mode modules

were avoieed, i.e., those which change their function sig-

nificantly based on the internal examination of flags. This

was tempered with due consideration for speed and size effe-

ciencies.

In order to increase the degree of determinism of the

hybrid (synchronous/asynchronous) real-time system which

included data protection and restartability, a strict set

of requirements design rules for order control was required

as follows:

"*A Controller establishes the priority, timing and

sequence, and conditions for the execution of the

processes on the next lower hierarchical level

ard only that level. This ordering is established

by requests to the executive function.

" The priority of a Controller is higher than the

priority of any process on its most immediate

lower level. Hiigher priority processes may be

activated by a signal from a lower priority process.

" I_' two processes have the same Controller and the

first has a lower priority than the second, then

afll processes in the control structure of the first

are of lower priority than the processes in the

14



control structure of the second. A process that

may be preempted by another process, may be

preempted by any of the other process' sub-pro-

cesses.

" Processes are activated when a set of event condi-

tions are satisfied. The set of event conditions

is selected by the controller of the process, but

the events tested in the condition may be signalled

ON or OFF by any process. This relieves the Con-

troller of the need to monitor for the condition

and activate the process at the proper time.

* All data interfaces between processes are communi-

cated through Compools by the executive system.

This is accomplished by effective "READ/WRITE"

requests. Executive system intervention is

required to insure data integrity across all DAIS

processors. From a program point of view I/O

data will be similarly treated and accessed

within the Compools by the READ/WRITE requests.

While these principles appear to be abstract, in the

DAIS context they were mapped into a finite set of basic

building blocks. These are four building blocks for the

DAIS Mission Software from the application software point

of view. They are:

oCompool Blocks

*Tasks

*Comsubs

* Events

Compool Blocks represent global data and are centrally

defined and controlled for a given project. Tasks are the

real-time processes within the system. Tasks pass informa-

tion solely via Compool Blocks and must follow the DAIS HOS

structuring rules. Comsubs are commonly used subroutines.
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These subroutines perform calculations only and have no

real-time control or interaction. Comsubs receive and send

information solely via parameter passage and have no access

to Compool Blocks. Due to the multiprocess nature of a

real-time system, there is the implied requirement for re-

entrancy with Comsubs. Events are binary valued control

information that enable tasks and provide the environment

for tasks to interact. Within the DAIS system, Events may

be considered to be either "latched", i.e., ON or OFF, or
"unlatched", i.e., a pulse, either plus or minus.

UsincT these building blocks, the HOS derived DAIS base-

line primarily effects the structuring and interrelationships

of Tasks. The major structuring requirements are summarized

in Table 2.

The DAIS Executive has taken some variance with respect

to this set of structuring rules. While the software was

developed within these objectives, some other features have

been added to allow an escape from this rigid structure.

This need arises either because of real-time criticality or

efficiency considerations. These modifications allow for:

*TThe specification of an absolute priority

*T-e ability to wait on time or an event

• The ability to update a Compool Block

within a single Task.

3.2 Avionics Executive Implementation Considerations

Avionics software differs from most ground based soft-

ware in ways that can impact design and implementation deci-

sions. This includes the possibility for optimization

because of a well-defined set of mission software, the con-

cern with real-time data conflicts, and the real-time cri-

ticalicy of the system.
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TABLE 2

BASIC STRUCTURED DESIGN STANDARDS

DAIS BASELINE: HOS DERIVED

• TASKS ORDERED BY PRIORITY.

* PLANAR TREES OF PRIORITY THAT CAN BE LINEARIZED.

*ROOT OF TREE HAS HIGHEST PRIORITY, AND THE

OFFSPRING OF A CONTROLLER ARE STRICTLY ORDERED:

IF PRIO(A) > PRIO(B) THEN FOR ALL DESCENDENTS

A AND B' OF A AND B, PRIO(A') > PRIO(B').

* CONTROL OF A MODULE IS SOLELY DEPENDENT BY SPECIFI-

CATION ON ITS CONTROLLER.

* EVENTS AND/OR TIME MAY CAUSE A MODULE TO EXECUTE

* DATA STRUCTURE,

*DATA INTO AND OUT OF A MODULE IS KNOWN BY ITS

CONTROLLER.

M MODULE CONSTRUCTION.

oONE FUNCTION.

*NO KNOWLEDGE OF CONTROLLER.

17
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3.2.1 Well Defined Set of Mission Software

In the case of the avionics software, the total set

of software is known pre-run time, thus allowing for various

static instead of dynamic implementations. For example,

data structure organizations can include indices versus

pointers since indices are in general more efficient both

in space and execution time. The number of run-time para-

meters for executive routines can also be minimized if the

information is built directly into the executive tables.

In addition, it becomes possible to analyze possible and

allowable task and data interactions.

one of the major concerns DAIS had was with respect to

data efficiency. DA'IS takes full advantage of static data

optimization possibilities by providing a pre-run time

executive table generator and analyzer. This tool

Partitioning Analysis, and LinkEdit FACility (PALEFAC, , is

an integral part of the DAIS Executive systems and allows

for optimized executive data information.

3.2.2 Real Time Data Conflicts

Data conflicts can occur in real-time systems due to

several different circumstances. Multiple updates of infor-

mation caused by such events as Direct Memory Access of I/O

can lead to non-homogeneous data. Accessing arrays of data

presents a problem with respect to assuring data concurrence

since an array can be partially modified while it is being

accessed.

These data conflicts can be solved in various fashions

including explicit task and I/O design and layout; by

explicit use of Update Blocks, e.c., HAL/S; by implicit

1/O - dato interlocks; by the implicit use of double buf-

fering in tasks or some combination of the above. ideally,

an irnplici-t solution would be desirable in order to

18
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eliminate the problem so that from the application programmer's

point of view it could not occur. This is indeed the desire

and design philosophy championed by HOS. Within the DAIS

system a double buffering method was implemented but with

more efficient alterniate methods allowable in certain cases.

3.2.3 Real Time Criticality

Avionics executives must be concerned with both the

time accuracy of the I/O interface signals and CPU satura-

tion. In a weapons system, for example, the accuracy of

an unguided weapon is dependent upon an accurate time of

release. Additionally, it is not an acceptable practice to

allow an avionics executive to stop; the system must continue.

One major area of real-time design criticality for the DAIS

Mission Software was the integrated development of restart

and reconfiguration capabilities as part of the overall soft-

ware package. In addition, CPU throughput considerations

cause revisions to the HOS principles to bring them into

conformance with the practicalities of actual system imple-

mentations.

3.3 Use of JOVIAL J73/I

The programming language selected for the DAIS Mission

Software was JOVIAL J73/I. The use of J73/I combined with

the design methodology espoused by DAIS required both control

of and modification to J73/I constructs and the addition of

several other features not available with J73/I. The use

and appearance of JOVIAL for the DAIS Mission Software was

modified in severil respects.

* The use of some JOVIAL language features were

restricted, prohibited, or modified with respect

to certain of its constructs.

* Additionjl "built-in functions" were provided to

the DAIS Mission Software programmer.
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0 A Real-Time interface was provided that augments

the language available to the Mission Software

programmer.

In addition, various commonly used procedures were made

available for programming the DAIS Mission Software.

3.3.1 JOVIAL Control Statement Restrictions

An example of types of restrictions imposed by DAIS

can be found with the J73/I control statements. Control

statements are executable statements that alter thc normal

flow of a program or subprogram. Normally, a program begins

with the execution of the first executable statement in the

program. When the execution of that statement is completed,

the next sequential executable statement is executed. This

process continues until the program ends. A subroutine,

when referenced, starts with its first executable statement,

then executes the next sequential executable statement, and

so on, until it returns control to the program statement

that referenced it. Control statements alter this sequen-

tial flow.

In structured programming, emphasis is placed upon the

visible and orderly transfer and return of control. JOVIAL

contains some control statements that work against the intent

of this structured-programming philosophy. Therefore, the

use of some control statements is either prohibited, restric-

ted, or actively discouraged by good structured-programming

practice. Table 3 lists the JOVIAL J73/I control state-

ments and their status with respect to DAIS Mission Software

usage.

20

Iii _I



Table 3-. JOVIAL J73/I Control Statements

v'lJovial GOTO, STOP, RETURN, IF, SWITCH,

Usage on tro WHILE, FOR, Procedure Call

Forbidden Usage STOP

Discouraged Usage GOTO

Restricted or
Modified Usage SWITCH, FOR, Procedure Call

Standard Usage RETURN, IF, WHILE

3.3.2 Built-In Functions

The J73/I language does not define a standard algorithm

or function package as part of the language specifications.

It is obvious that such functions as SIN (sine) and COS

(cosine) are required for avionics programming. DAIS

developed and specified a set of such functions and these

are delineated in Table 4. There was one other major

design requirement with respect to these functions. The

mission software environment is that of a multiprocess and

multiprocessors. It is therefore necessary to make these

arithmetic functions appear to be reentrant. Reentrancy

is not directly supported in J73/I, but rather the language

has the concept of "based" procedures. This in turn requires
the appearance of a break point in a routine invocation.

This provision for the built-in functions was done in such a

fashion as to provide the user with function calls of the

forms:

SIN @PTR (THETA) or

SIN (PTR, THETA).

21
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The underlying design principle was to present to the appli-

cation programmer the interface to which he is familiar and

which he desires.

Table 4. DAIS Functions and Definitions

Function Definition

ACOS (argument) Arc cosine
AS!N (argument) Arc sine
AlAN (argument) Arc tangent
ATAN2 (argl,arg2) Arc tangent of argl/argZ
COS (argument) Cosine
COSH (argument) Hyperbolic cosine
EXI' (argument) Exponential function
LN (argument) Natural logarithm
LOG (argument) Logarithm to the base 10
MAX (argl,arg2) Maximum of argl and arg2
SIN (argument) Sine
SINH (argument) Hyperbolic sine
SQRT (argument) Square root
TAN (argument) Tangent
TANH (argument) Hyperbolic tangent

3.3.3 Real-Time Interface

The DAIS methodology contains both solutions to the

real-time data update problems and also provides for a

clean methodology of software restarts. The structuring

is predicated on the fact that references to global data be

in actuality references to a local copy of the global data.

In certain circumstances, where Tasks are of short duration

and of highest priority, reference to the actual "global

copy" of the data is allowed. Table 5 describes the DAIS

real-time executive constructs which provide the task real-

time interfaces.
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Table 5
DAIS EXECUTIVE REAL TIME CONSTRICTS

PROCESS CONTROL STATEMENTS

* SCHEDULE (task name>,?Rl0RZTY..pro> (latched) {latched)} J(tim field);

<unlatched>: :- ,UPON<event expression>
<latched>: :-,IF<event expression>
(time field>::-.PHASE-inte9er, PERIOD-i

<event expression>: :-<factor> <factor>AND<event expression>
<factor>: := < factor2>] j factor2>
<factor2>: ;-< r set>ONI<or set>-OPr<or set>
<or set>: :-<evefT<j event>OR<or set> DATA DECLARATIONS

" CANCL (<task name>); a TASK (<task name>),

" TERMINATE (<task name>), 0 EVENT (<event name>) I

0 WAIT'UNTIL (time>); * LOCAL'COPY (<data block>,<t.pe>);

SWAITI FOR ~a GLOBAL'COPY (<data block>,<t(e),)a

" WAIT ( <vent>,(<tate>); <j_ . :->;.JtEADIWRITjUPDATEjTRIGGER

<time> :: - nPber MINOR'CYCLEStnumber SECONDS 0 COKSUR (<comsub name>);

(state>:: - ONI4OFFI + PULSE[- PULSE ______________________

" SIGNAL event>, OFF / CONTROL STATEMENTS
) READ (<COMPOOL block name>)s

PROCESS .CORTROL FUNCTIONS 0 WRITE (<COMPOOL block name>);

* bit function call::-ERAD(<event>) s ACCESS (<COMPOOL block name>);
0 bit function call::-INVOKFD((task name>) A

0 integer function l::-TIME *RACS <-OPO lc ae)

e integer function call::-MINOR'CYCLE'NUMBER TRIGGER (<COMPOOL block name>.<tiae) .deltatime>);

The Process Control statements describe the real-time

structuring and control of the Task hierarchy. The SCHEDULE

statement was the most complex of these statements and its

execution sets up the environment in which the Task will

execute. That is, the SCHEDULE statement upon being executed,

describes the priority of the task being scheduled and the

conditions, both event and time, under which it will be executed.

The CANCEL and TERMINATE verbs de-scheduled or simply

prevented the current execution of a Task, respectfully. The

various wait statements allow a task to wait for an event or

for a relative or absolute time before it is executed. The

SIGNAL statement allows a task to control the setting of a

real-time event.
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The I/O Control statements allow the reading and writing

of the global Compool Blocks. The READ and WRITE statements

are used with LOCAL'COPYs while the ACCESS and BROADCAST

statements have a parallel usage for GLOBAL'COPYs. The time

granularity of the DAIS system is based upon the concept of

a major frame and minor cycles within that major frame. DAIS

has nominally defined a major frame as one second but this

can be modified to any reasonable value. Within the current

DAIS system, there are 128 minor cycles per major frame.

With respect to task executions, execution time granularity

is that of the minor cycle or 7.8125 msec for the current time

partitioning. When weapon release or other minor cycle time

critical events are to occur, it is desirable to have more

precision than this minor cycle time granularity would allow.

The TRIGGER statement supports this need and is currently

specified to have an accuracy of one millisecond.

While DAIS has chosen this set of executive primitives,

it differs from those found in languages such as HAL/S, SPL/I,

and PEARL. In each of these languages, the real-time con-

structs vary, yet each is sufficient to handle real-time

process control. The importance of a particular set of such

primitives is slight compared to the advantages of having a

single standardized set.

3.4 Avionics Environment

Central to the DAIS concept is the avionics specific

nature of t.he design. Avionic systems have unique requirements

that are not always applicable to ground based systems. Since

these requirements are unique to embedded computer systems,

it was des:.rable to provide the applications programmer with

a set of functions or subroutines of commonly used type.

This prevents duplication of development effort and standar-

dizes the calling sequences for these commonly used, avionics

subroutine;.
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The D~AIS Mission Software developed a number of corn-

mnonly used subroutines (Comsubs) for use by all applications

programmers. Table 6 lists the Comsubs currently available

on DAIS.

3.5 Managerial Control: DAIS Software Standards

one of the important attributes required for the development

and control of a large software project is the definition and

enforcement of a set of design and programming standards.

Under the DAIS Mission Software contract, DAIS Mission Soft-

ware standards were developed that defined standards, rules

and guidelines to be followed by the software engineers in

the design, implementation, verification and documentation

of the DAIS Mission Software. The Standard was intended to

be an evolving document. Beginning from the baseline docu-

ment, the standards were added to and otherwise revised to

reflect the actual experience gained from the DAIS Mission

Software development effort. Not only did these standards

define the guidelines, but they were also authoratative.

Any variance from the standards required the approval of

the Chief Programmer who had the technical authority for

the project.

The software standards document continued to evolve

throughout the mission software development effort. In

its final evolution, the standards consisted of five

chapters and a set of six appendices. A brief description

of the standards is as follows:

1. Introduction

2. Architectural Background - This chapter presents the

basic overview information on the DAIS system required

for the full understanding of mission software.
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TABLE 6. DAIS COMMONLY USED SUBROUTINES(COMSUBS)

Comsub Definition

Vector/Matrix Comsubs:

MXM REENTRANT (AM,BM,CM) Matrix-matrix product
MXV REENTRANT(AM,BV,CV) Matrix-vector product
TRANSPOSE REENTRANT

(AM,BM) Transpose of a matrix
VADD REENTRANT(AV,BV,CV) Vector addition
VDOT REENTRANT(AV,BV:CS) Vector dot product
VUPDAT REENTRANT

(AV,3C,CV) Vector update

Special Function Comsubs:

BINARYSEARCH REENTRANT
(ARRAY,VALUE,NUM:OUT) Binary search on an array

REVERSE REENTRANT
(WORD,NUM:DROW) Reverses the bits of a word

SMOOTH REENTRANT
(S:MOOTHED VALUE, RAW'
VALU'E,TAU,DT:SMOOTHED' First order lag smoothing
VALU ) comsub

Formattin Comsubs:

ALTSETPORMAT REENTRANT Formats reference pressure
(REF'PRES:CHAR) for display

CNTRSTATIONFORPMAT REEN- Formats stations in two
TRANT (STATIONS,CHAR) strings

CONVERTLATLONG REENTRANT Formats latitude/longitude
(1ZAD,DEG:SEC) in degrees and seconds

DEGREEFORttAT REENTRANT Formats radians into
(RANMIAN3:CHAII) degrees for display

DENOpRALIZE REENTRANT Denormalizes floating
(INPJT,SF,OUJTPUT) point values

ELEVDHLFORMAT REENTRANT Formats elevation/
(ELEV,11GT:CiIAR) decision height for

display
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TABLE 6. (cont.)

Comsub Definition

Formatting Comsubs (cont.)

FLOATFORMAT REENTRANT Formats a floating point
(NUMB,COUNT:CHAR) integer for display

FLYTOFORMAT REENTRANT Formats fly-to values for
(PT,RAD,DIST:CHAR) display

FUZINGFORMAT REENTRANT Formats the stores fuzing
(FUZING:CHAR) for display

ILSCHNGFORMAT REENTRANT Formats the ILS data for
(FREQ,COURSE :CHAR) display

INTERVAL FORMAT REEN- Formats the weapon interval
TRANT(INTERVAL:CHAR) for display

JETPAGEFORIAT REENTRANT Formats the programmed jetti-
(JET'TABLE:CHAR) son data for display

LATLONGFORMAT REENTRANT Formats latitude/longitude
(RAD,PTYPE:CHAR) for display

LIMIT REENTRANT(VAL1, Limits a value at upper and
LOW,HIGH:VAL2) lower limits

MAGVARFORMAT REENTRANT Formats the magnetic varia-
(RAD:CHAR) tion for display

11ODEFORMAT REENTRANT Formats the release mode
(MODE:CHAR) for display

NORMALIZE REENTRANT Normalizes a fixed point
(INPUT,SF:OUTPUT) number

OFFSETFORMAT REENTRANT Formats offset data for
(ID:CHAR) display

QUANIDFORMAT REENTRANT Formats the stores quantity
(QUAN,ID:CHAR) and name for display

STATIONFORMAT REENTRANT Formats the stations for
(WEAP'STATIONS:STATION' display
WORD)

TCNCHNGFORMAT REENTRANT Formats the TACAN channel
(CHAN,XY:CHAR) for display

UIGENCODE REENTRANT Formats an integer for
(NUMB,COUNT:CHAR) display

UHFCHNGFORMAT REENTRANT Formats the UHF channel/
(FREQ:CHAR) frequency for display

WINDSETFORMAT REENTRANT Formats the windset data for
(RAD,VEL:CHAR) display

Note: 1) All vectors are 3 dimensional.
2) All matrices are 3 by 3.
3) Vectors and Matrices are declared as Tables.
4) The last argument in the parameter list is

the "output" argument.
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3. Software Structure - This chapter discusses the structure

design requirements for the Applications Software. The

structuring is based on Higher Order Software (HOS) prin-

ciples as applied to the DAIS system.

4. Programming Standards - This chapter contains the standard

required for the DAIS Mission Software in general and the

Applications Software in particular. It discusses:

*DAIS Language Usage

eApplication Software Naming Conventions

: Building Blocks for Application 
Software

'Tasks and Events: Their Control and Interaction.

It is this chapter, more than any other1 that is used as

a reference by the engineer and programmer in the writing

of JOVIAL routines.

5. Executive Programming Standards - This chapter contains

information unique to the Executive development, parti-

cularly naming conventions and structuring requirements.

Appendix 1. - The required system and project information

necessary to actually build a software

mission.

Appendix II. - Details of the Executive-Application Inter-

face which serve as an Interface Control

Document for the particular implementation.

Appendix III. - The system and project unique information

required for the proper functioning and

execution of the executive implementations.

Appendix IV. - The documentation standard.

Appendix V. - The Testing and Verification requirements

assoc-iated with the development of the

Mission Software.

Appendix VI. -The current set of DAIS Comsubs.
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3.5.1 Programming Standards

The objective of the programming standards chapter

(Chapter 4) of the software standards is to transform the

functionally stated design requirements into a set of speci-

fications in terms of the programming language being used.

The specifications are in turn documented using the documen-

tation standards (Appendix IV) as a guide.

Specification proceeds in a top-down manner.

Beginning with the Master Controller, the hierarchical

control map previously derived from the requirements design

was reconsidered in terms of JOVIAL programmable blocks and

executive capabilities. Based on mission requirements, (e.g.,

time responses, on-line computations) the functions to be

performed were characterized as periodic or aperiodic proce-

ses or sequential (either in-line or 'called') subroutines.

Specific details such as algorithms, data structure and name

scope were integrated into this framework. At each succeed-

ing hierarchical level, Controller and Calculator modules were

designed. The internal structure of a lower level module

was not specified until its Controller's input, process and

outputs were completely defined.

Sections of the programming standards chapter specify

guidelines for the use of JOVIAL and the executive system.

Th~ms permits the detailed design and implementation of the

DAIS Mission Software. The main areas addressed were:

* Naming Conventions

" DAIS Language Usage of J73/I

" DAIS Built-In Functions

* DAIS Comsubs

*Real-Time and Executive Interface

Due to the differences in the nature of Applications

Programs versus System Programs, a special chapter on Execu-

tive Programming Standards was required. While the basic

programming practices hold, differences occur of necessity

with respect to: 29



* Naming Conventions

*Language Use of J73/I

3.5.2 Documentation Standards

DAIS Mission Software was designed using a combination
of two basic programming styles: structured programming and

top-down techniques. The structured programming concept is

characterized by a limited, ordered set of program constructs.

The use of top-down techniques results in program flow which

can be compared to the organization of a book; the "table of

contents" specifies the entire program flow on page one and

each "chapter" is the expansion of a particular block. Con-

ventional flow chart techniques cannot adequately convey these

organizations. The block structure, the scope, and the data

"low inherent in any structured top-down program must be

represented by a structured flow chart.

The DAIS Mission Software made use of a flowcharting

tool, IRATE, that automatically generated structured flow-

charts from a single command string. The basic elements of

these flowcharts represent J73/I constructs. Ideally, all

flowcharts should be computer generated by a single tool for

consistency, however, equivalent flowcharts, generated by

hand using the same symbols, were acceptable when rapid docu-

mentation turnaround was required.
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* SECTION IV.
TECHNICAL DESIGN

Operational Flight Program (OFP) Software may be broadly

divided into two parts: Executive (or Systems) Software, and

Applications Software. Figure 2 shows this logical dicho-

tomy along with a lower level of partitioning. It should be

noted that there are many possibilities of partitioning the

various avionics functions. For example, the Applications

Software's Control Programs could be placed under the Execu-

tive (System) Software area. The structure shown is one

possibility that reflects the OFP used for the DAIS Mission

Software.

4.1 Executive Software Overview

There are characteristic actions that must be performed

by avionic and other real-time process control computers.

These include the process control of real-time tasks (and

their interactions) ; specialized 1/O; system initialization;

and system control considerations. Man-rated or process con-

trol systemsoften closed loop, must continue to function

if at all possible in contrast to non-real-time systems which

may "crash" without creating hazardous situations. These

four areas constitute the Executive Software and are shown

in Figure 3 along with a lower level of partitioning.

The development of an executive can be viewed from two

different viewpoints. In one view, the executive raises the

level of the Applications Software interface. Instead of

each Application Program being involved with the details of

I/O (e.g. , bus control), a logical interface is available

to the Applications programmer as a primitive which performs

the function desired (e.g., READ). In addition, system-wide

considerations such as the Monitor/Recovery function are

removed from the concern of each applications program by

providing the protection at a "higher" level.
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In the other view, an executive is used to optimize sys-

tem resources. That is, the executive attempts to maximize

CPU and I/O subsystems' efficiency. This is accomplished by

multiprocessing and by controlling the details of the I/O

interactions.

Avionic system designs can also be considered from these

two different viewpoints. For example, the principle advan-

tages involved in raising the level of the system interface,

from the Applications Software point of view, is to make the

Applications Software independent of:

9 The processor-memory-I/O network (e.g., single

processor, multi-processor, federated or distri-

butive systems).

0 Details of I/O implementation (direct I/O or

multiplexed bus).

e Partitioning of software across processors.

* Executive implementation (e.g., static task

tables or dynamic task tables).

In addition, it is desirable to have:

*Automatic Synchronization and control (e.g., of

data conflicts; I/O handling; interprocessor

communication). I
oInvariant real-time capabilities on different

processors or implementations.

In order to obtain these benefits the brunt of the dif-

ferences between various system designs need be borne by the

Executive Software which is processor specific. Not only do

processor instruction sets and implementation languages vary,

but so do the processor-memory-I/O networks, I/O mechanisms,

and reliability requirements. Yet with all these possible

variances, the basic functions required by the Applications

Software remain constant. It is incumbent on the Executive
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Software to support the desired Applications Software inter-

face, while simultaneously optimizing the resources of a given

system.

In the current DAIS implementation, the I/0 functions

of the network are controlled in a master/slave fashion.

one processor is designated the Master Processor and any

remaining processors are termed Remote Processors. The

Master Processor has responsibility for the control and ser-

vicing of the data bus including synchronous and asynchronous

message traffic control among the system components. The

Master Processor thus serves as the Bus Controller for the

network.

Given the functional breakdown of the DAIS Executive

in Figu~re 3, the actual Process Control portion of the

executive function must be distributed among the processors

to correctly impl#pment real-t.rne process interactions. The

functional areas within the process control reflect the struc-

tural elements being handled; task, events, data, and time;

interfaces both to the Applications Programs and to the physi-

cal hardware and additionally the control flow through the

process controller itself.

The I/O Control portion of the executive is located in

the 1 .aster Processor, each remote processor containing a

simple interrupt handler. The 1/O Control functional areas

in turn reflect the standard elements being handled: the

bus and time; the hardware interface; and any special mass

memory interface.

The Process Control and I/O Control functions form the

core of the DAIS Executive. The Systems Initialization func-

tion is somewhat dependent on the actual system and operating

procedures while the Systems Control is concerned with an

extra layer of Master/Recovery and Reconfiguration capability.
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The DAIS Executive implementation optimizes process and

I/O control through the use of executive tables. These tables

are statically generated at pre-run time instead of being

dynamically linked at run time. This table generation func-

tion is performed by the Partitioning, Analyzing and Link-

Edit FACility (PALEFAC).

Relating this terminology, the physical and functional

breakdown of the DAIS Executive system is shown in

Figure 4.

FIGURE 4. EXECUTIVE STRUCTURE BREAKDOWN
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4.2 Application Software overview

The Application Software of an operation Flight Program

(OFP) is responsible for implementing all phases of an air-

craft mission. It must compute navigation, weapon delivery

and guidance data; it must be able to input data from the

avionics sensors and in some cases output control commands

to the sensors; it must communicate with the cockpit controls

and displays; and it must be able to control the periodic

execution of the above functions.

A general partitioning of the Applications Software is

shown in Figure 5 along with a lower level of partitioning.

Applications Software can be viewed as having three conceptual

roles: Control, Equipment Interface, and Avionics.

Control is reflected in Figure 5 as "Control Programs"

These programs control the sequencing of the Avionics functions.

High level control should not be carried out within algorithmic

functions but rather should be implemented as separate control

software. This then allows the Avionic functions to be inde-

pendent of mission phases.

Equipment Interface is reflected in Figure 5 as "Equip-

ment interface". These programs form a buffer between the

sensors, controls and displays and the rest of the Applica-

tions Software. Each module in this segment is responsible

for converting/formatting data for the equipment since the

application software employs floating point while the equip-

ment 1/0 is in fixed point quantities. Equipment specific

testing can also be carried out in these modules.

Avionics is reflected in the Figure 5 as "Pilot Inter-

face"; "Guidance, Navigation and Control"; and "Weaponry".

These modules perform algorithmic and bookkeeping functions;

only a low level of control is to be found in these routines.

Avionics has been further broken into these three functional

areas due to their independent characteristics and purposes.
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The actual development of OFP Applications Software is

highly affected by the range of functions necessary to meet

Mission Requirements. While the Mission Requirements usually

entail the functions delineated in Figure 5, each of these

functions may be quite elaborate with many possible sub-func-

tions or may be so simplified as to be included in another

function, e.g., Navigation may become a part of Weapon Deliv-

ery. Other factors that affect the design of the Applications

Software include the sensor available to perform the avionics

functions; the pilot controls and displays used; the inter-

faces to the sensors, controls, and displays; the executive

services available; the subsystems monitored; and the re-

quired backup and reconfiguration ability.

Within the framework of meeting specific Mission Require-

ments, the Application Software should also fulfill several

other goals in order to effectively reduce the system's total

life cycle cost:

1. Ease of comprehension, generation and documentation-

The software should be understandable, easy to write, and

easy to document. This will in turn lend to the accomp-

lishment of the other goals.

2. Ease of Modificati~on and Maintenance - The software

should be able to easily changed to meet new requirements

and interfaces.

3. Ease of Testing - The software should be constructed so

that it is easy to test and isolate errors.

4. Portability and Flexibility - The software should be able

to be used with different avionics systems and/or differ-

ent avionics missions.

5. Well-ordered Structure - The Applications Software should

consist of (largely) independent modules that are well-

ordered relative to each other.
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6. Reliability - The software should be highly reliable and

should provide graceful degradation of system capabilities

in case of component failure, where possible.

7. Execution time and size - The software must be able to

meet the real-time constraints of the avionics mission,

and the memory size limitations.

One of the goals of the DAIS system was to develop mission

software that was useable not just for one OFP, but could be

easily modified to meet the needs of several OFPs. The DAIS

Applications Software has been developed specifically to meet

this goal.

The DAIS system can be thought of as a multilayered

system. At the lowest level, as shown in Figure 6, is the

hardware. The executive forms a middle layer in interfacing

with the hardware and providing a general functional interface

to the applications software. At the top level is the applica-

tions software, which can itself be further divided into layers.

Three levels of applications software are shown in Figure 6.

The lowest applications software level is the equipment

interface. This includes both the Equipment Interface soft-

ware, which interacts with the sensors, and portions of the

Pilot Interface software, which interact with the controls

and displays. This software effectively isolates the compu-

tational portions of applications software from the particu-

lar equipment interfaces.

The middle layer of applications software is the compu-

tational level. This is the heart of the applications soft-

ware, where all "real" computations occur. Only localized

control is done in this area and no equipment interface con-

trol. This layer includes the Navigation, Guidance and Con-

trol; Weapon Delivery; and Stores Management Computational

Software; and the non-equipment interface portions of the

Pilot Interface Software.
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The top layer consists of the Control Programs. This

software does not perform calculations per se, but controls

which portion of the middle layer is active.

The applications software is isolated from the hardware

by the executive. The hardware may change completely without

being visible to the applications software. The computational

portion of the software is further isolated from the sensors,

controls, and displays by the equipment interface. A sensor

may chanqe, but only the equipment interface will require

modification as long as the sensor is more or less functionally

the same. The computational algorithms are also separated

from the global control software. Instead of having the con-

trol logic sprinkled throughout the software, it is isolated

to the extent possible. This leaves the computational modules

as mainly algorithmic modules. Changes to the sequencing or

control of the modules or changes to equipment interface do

not affect the actual algorithmic software.

Changes to the system are thus usually localized to one

program or at least one area. Also different types of soft-

ware are functionalIly separated. Tested algorithms do not

usually ne.ad to be retested for changes in the control soft-

ware or sensor interfaces. The layering thus supports easy

modification of the software.

4.3 Applic-ation/Executive Interface

within the life cycle of an avionics system, there usu-

ally arises a requirement to upgrade the system with respect

to some equipment (e.g., sensors, weapons) or some algorithm

(e.q. , steering, navigation) . These changes in turn dictate

modification of the avionics operational Flight Program (OFP).

The first digital avionic processors were programmed in

assembly c,3de and were difficult to modify. The code had to

be hand crafted in order to obtain all the performance desired.

Modification to such OFI's was not only difficult, but the

addition of* any new feature often required a major redesign
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and deletion of current features. The Air Force B-i and

F-16 programs have specified the use of a Higher Order Lan-

guage (HOL), J3B, for their avionic systems. Similarly, NASA

has selected HAL/S for the Space Shuttle. The use of a liOL

reduces the classes of errors that are possible, and greatly

aids in the understanding of and modification of the resul-

tant OFP in a much more straightforward and less error prone

fashion. The use of a HOL has also largely isolated the OFP

from the characteristics of the target machines. This separa-

tion of the OFP from specific machine characteristics in turn

allows for initial code development and module testing on a

large host computer. This has the advantages of easier access,

earlier development and usually more complete diagnostic tools

for the software development than available with the actual

target computer.

The DAIS Mission Software operates in a real-time environ-

ment. The Software must be able to respond to sensors and

control actuators. It must have the ability to execute tasks
"periodically" in order to sample data or to execute an algor-

ithm which updates current state information. The capability

to monitor the real-time control process itself must also be

present. This is required in order to take corrective action

upon sensor or actuator failure, or upon failure in the control

program. The execution of some missions requires the capability

of executing tasks at appropriate times. These forms of task

interaction (the initiation of tasks at a time or upon command;

the periodic execution of a task; the conditional execution

of a task on the occurrence of an event or on the detection

of an error) require certain basic executive capabilities.

These capabilities are of necessity to be found in real-time

process control executives.

The specification of the executive interfaces in JOVIAL

is, in effect, a real-time language augmentation to JOVIAL

at least from the Applications Software point of view. At

the same time it provides a set of "executive primitives"

that define the basic operations which the executive must per-

form upon the tasks. 43
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The description of the various real-time statements and

the executive interface given below therefore becomes part of

basic programming language used in DAIS Applications Software.

The syntax and semantics of the various real-time statements

are the allowable "real-time statements" for the DAIS Mission

Software. Other process control languages have of necessity

similar real-time constructs. Examples of such languages

include NASA's HAL/S, the US Navy's SPL/I, and the European

PEARL.

The augmented real-time statements are of three forms:

Real-Time Declarations, Real-Time Built-In Functions, and

Real-Time Statements. The Declarations provide the special

data structure required for the DAIS executive system. The

Statements are the real-time primitives that interact with

the executive. The Built-In Functions allow access to

certain real-time information.

4.3.1 Real-Time Declarations

Real-Time Declarations are used to declare the real-

time entities referred to within a Task. There are four kinds

of Real-Time Declarations:

* Task Declarations

* Event Declarations

*Compool Block Declarations

* Comsub Declarations

4.3.1.1 Task Declarations

Task Declarations are used to declare tasks referred to

in Real-Time Statements. They are used to create the appro-

priate data base required for task manipulation within the

DAIS system. The Task declaration has the following form:

~task statement',::= TASKX ( task nm'



A TASK declaration must appear for each task referenced

within the compilation unit.

Examples: TASK(CP02CONFIG);

TASK(SP21WIND);

TASK(QPl6TACANIN);

4.3.1.2 Event Declarations

Event declarations are used to declare Events referenced

in the WAIT, SIGNAL and EREAD real-time constructs. They

are used to create the appropriate data base required for

event manipulation within the DAIS system. The EVENT delcar-

ation has the following form:

<event statement>::= EVENT (<event name>);

The event must be declared whether it is an explicit

event provided by the Applications Software programmer or an

implicit Compool block update, or implicit Task state event.

Examples: EVENT(EO05IMFKSK);

EVENT(SP04NAVPROP);

EVENT (IC33SROUT);

4.3.1.3 Compool Block Declarations

Compool block declarations are used to declare any Compool

Blocks referenced in READ, WRITE, ACCESS, BROADCAST, or TRIGGER

statements. There are two types of Compool block declarations.

Local - used to create both the local copy of the compool

block and to allow controlled access to the refer-

enced compool. This declaration is used in normal

tasks.

*;Lob, - Jse, to access the referenced compool block. This

.:firat~o: can only be used in privileged mode tasks.
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The two Compool block declarations have the following
form:

<local copy statement>::= LOCAL'COPY (<data block>,
<all types>:;

<global copy statement>: := <GLOBAL'COPY> (<data block>,

<type>);

<all types>::= <type> ,TRIGGER'FORCED'READ

<type>: := READIWRITEJUPDATE

The type identifies how the Compool block is referenced

within the task in which it is declared. TRIGGER means that

it is referenced only in TRIGGER statements, and may appear

only in LOCAL'COPY statements. READ means that the compool

block is referenced only in READ or ACCESS statements. WRITE

means that the Compool block is referenced only in WRITE or

BROADCAST statements. UPDATE means that the Compool block

is referenced in both READ or ACCESS, and WRITE or BROADCAST

statements within the task. FORCED'RFAD means that the Con-

pool block is referenced only in FORCED'READ statements.

Examples: LOCAL'COPY(NC07DIRCOS,UPDATE)

GLOBAL' COPY (PC60SWITCHES, READ)

GLOBAL'COPY(NC50LASER,WRITE);

LOCAL'COPY(PC50SWITCHES,FORCED'READ);

LOCAL'COPY (SC9IRFLEASE,TRIGGER);

Since GLOBAL'COPY statements are restricted to PRIVILEGED'

MODE'TASKs their usage is also correspondingly restricted.

4.3.1.4 Comsub Declarations

Comsub declarations are used to declare Comsubs called

within the Task. They are used to create the appropriate

inter-action with the DAIS system. The Comsub declaration

has the folowinq form:
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<comsub statement>::= COMSUB (<comsub name>);

A Comsub declaration must appear for each Comsub refer-

enced within the compilation unit. It should be noted that

the DAIS Built-In functions (e.g., SIN, COS) are not con-

sidered as Comsubs but rather as part of the basic language

available to the programmer and should, therefore, not be

declared.

Examples: COMSUB(MXV);

COMSUB(VDOT);

COMSUB(TRANSPOSE);

4.3.2 Real-Time Statements

The Application Software requests the services of the

Executive through Real-Time Statements. There are eleven

kinds of Real.-Time Statements:

" Schedule Statements

" Cancel Statements

" Terminate Statements

" Wait Statements

" Signal Statements

* Read Statements

* Write Statements

" Trigger Statements

* Access Statements

" Broadcast Statements

* Forced Read Statements.

Real-Time Statements present the Applications Software

programmer with the basic primitives to be used in dealing

with real-time processes and for interfacing to the executive.

They pass appropriate information to the executive as parameters.
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4.3.2.1 Schedule Statements

Schedule Statements are used by a Task to Schedule another

Task. A Schedule Statement must include the following infor-

mat ion:

* The name of the Scheduled Task

o The priority of the Scheduled Task

* The Latched Conditions (if any) in the Event

Condition Set of the Task

9 The Unlatched Conditions (if any) in the Event

Condition Set of the Task

9 The period and phase of a Minor Cycle Event

(if any) in the Event Condition Set of the Task.

The Schedule statement has the following form:

<schedlule statement>:: (<unlatched> lth>
SCHE~DULE (-:task name>, PRIOM'Y-,rio i P~ }{la 1d

<jIrio: :.-<inteqier>1 -<intecjer> PRIVILEGED

<unlatiche&>: :=,UPON<event excpression>

hIatchied>: ::,IF<ev-nt expression>

<tir-e field!>:: -~, 1AS i nt eer, PER IOD-- nteger

<e.vent exi 'resns ion>: : <f aetor> I<factor>I'D~event expression>

<factor>::=[<fac' or2>) j<factor2>

<f,,(tor2>: :<o e=KJ<or set>-OFF<or set>

<or svt>: :=<event>I<event>OR<or set>

<integer>::- a legal JO%"kL integer constant
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The semantics of the SCHEDULE statement are as follows:

* The <task name> is the name of the task to be invoked.

* The <prio> field indicates the priority of the task to be

scheduled. This value may be either an absolute integer

or a negatively signed integer, or the word PRIVILEGED. If

it is an absolute integer, then this is the *absolute"

value of the priority of the task with respect to the

DAIS Software system. The smaller the value, the higher

the priority. If <prio> is a negative integer, this

assigns the priority relative to the scheduling task and

establishes the relative priority among all of its sib-

lings. A <prio> of -1 establishes the scheduled task as

having a priority immediately lower than that of its

parent, the one who scheduled it. A <prio> of -2 is of

priority immediately less than that of the sibling task

scheduled with a <prio> of -1. If the <prio> is the word

PRIVILEGED, the task is scheduled as a privileged mode

task.

" Priorities used by the DAIS Mission Software Tasks are

of relative priority. Exceptions to this rule require

central approval. The use of absolute priorities is

limited to time critical tasks, and in general will be

associated with the use of the TRIGGER statement.

* The Latched and Unlatched parts of the Condition Sets

are defined by their respective <event expression>s.

The syntax of the event expression allows the combina-

tion of events to be evaluated as either ON or OFF in

various combinations with AND and OR.

* The integer associated with PHASE must take a value from

0 to PERIOD-l indicating the appropriate phase.
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* The integer associated with PERIOD must be either 1,

2, 4, 8, 16, 32, 64, or 128. This corresponds to the

number of minor cycles that must elapse before the task

is scheduled again.

Examples:

SCHEDULE(QP33FLRSR,PRIORITY=PRIVILEGED,PHASE=3,PERTOD=8;

SHCEDULE(QPlIDOPOUTCOM,PRIORITY=-15,IF E035DOPON=ON,

PHASE=l,PERIOD=4);

SCHEDULE(CP05IMFKHAND,PRIORITY=-5,UPON E005IMFKSK=ON);

4.3.2.2 Cancel Statements

The Cancel Statement is used by one Task to put another

Task into an UNINVOKED state. The Cancel Statement includes

the name of the Task to be Cancelled. This Task must either

be the Task within which the statement is executed, or a son

of that Task. If a son is cancelled, all the dependents of

the son are also cancelled automatically. If a Task attempts

to Cancel itself, it will not affect its own state, but will

Cancel all of its descendants. If a Task specifies itself

in a Cancel Statement, it must be declared in a Task Declara-

tion within itself. The Cancel Statement has the following

form:

<cancel statement>::= CANCEL (<task name>);

Here <task name> is the name of the task to be cancelled.

Examples: CANCEL(QP02IMSOUTTORQ);

CANCEL(SP40UHFCHG);

4.3.2.3 Terminate Statements

The Terminate Statement functions identically to the

Cancel Statement, except that it places the named Task into

the TNACTTVE state instead of the UNIN7OKED state. The

Terminate !'tatement has the following form:
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<terminate statement>::= TERMINATE (<task name>);

Here <task name> is the name of the task to be terminated.

Examples: TERMINATE(QP60DEKIN);

TERMINATE(DP41IMFKVAR);

4.3.2.4 Wait Statements

Wait Statements are used by Tasks to place themselves

into the WAITING state pending certain event occurrences.

There are four forms of Wait Statements in the DAIS system.

" Mission Time Waits

" Relative Time Waits

" Latched Waits, and

* Unlatched Waits.

These various Waits are implemented in the following form:

<wait until statement>:: =  WAIT'UNTIL (<time>);

<wait for statement>:: =  WAIT'FOR (<time>);

<wait statement>:: =  WAIT (<event>, <state>);

<time>::= <number> MINOR'CYCLES
I<number> SECONDS

<state>::= ON[OFFI+PULSEI-PULSE

<number>::= a legal JOVIAL unsigned
integer constant
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The WAIT'UNTIL is a Mission Time Wait and places the

Task into the WAITING state until the specified Mission time

has occurred. If the specified time has already occurred,

the task is not put in a waiting state.

The WAIT'FOR is a Relative Time Wait and places the

Task into the WAITING state for a specified period of time.

If the specified period is non-positive the task is not put

in a waiting state.

It should be noted that in either the Mission or Relative

Time cases, the time may be specified in units of either

MINOR'CYCLES or SECONDS.

The WAIT statement is used to place the Task into the

WAITING state with respect to an event which is named in

the <2vent> field. Whether the statement is Latched or

Unlatched depends upon the <state> designated. ON and OFF

reflect Latched events, while +PULSE or -PULSE reflect

Unlatched events.

A Latched Wait places the Task into the WAITING state

until the specified Event reaches the' specified "desired

value" of ON or OFF. If the Event already has the desired

value, the task is not put in a waiting state.

An Unlatched Wait places the Task into the WAITING

state until the specified Event reaches the specified "desired

value" of ON or OFF. If the Event already has the desired

value, the task is not put in a waiting state.

An Unlatched Wait places the Task into the WAITING state

until the specified Event receives a +PULSE (i.e., until the

event is set or signalled ON) or receives a -PULSE (i.e.,

until the event is set or signalled OFF). The task is always

put in a wiiting state.

Examples: WAIT(SP04NAVPROP,OFF);

WAIT'FOR(2 MINOR'CYCLES);

WAIT'FOR(122 SECONDSO) ;
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4.3.2.5 Signal Statements

A Signal Statement sets a specified Event to a speci-

fied value. The form of the Signal Statement is as follows:

fON
<signal statement>::= SIGNAL (<event>, FOFF );

Here <event> is the name of the event to be set to the value

ON or OFF as designated.

Examples: SIGNAL(E0O5IMFKSK,ON);

SIGNAL(EO35DOPON,ON);

SIGNAL(EO35DOPON,OFF);

4.3.2.6 Read Statements

A Read Statement copies the value of a specified Compool

Block into the corresponding Local Copy. The form of this

statement is as follows:

<read statement>::= READ (<compool block name>);

<compool block name>::= <ext name>

Here the <Compool block name> is the name of the Compool block

to be read into the corresponding Local Copy.

Examples: READ(NC07DIRCOS);

READ(CC04REQUEST);

4.3.2.7 Write Statements

A Write Statement copies the corresponding Local Copy

into the specified Compool Block. The form of this state-

ment is as follows:

<write statement>::= WRITE (<compool block name>);
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Here the <Compool block name> is the name of the Compool block

which is to receive the value of the Local Copy.

Examples: WRITE(NC07DIRCOS);

WRITE(WC05SOLQ);

4.3.2.8 Trigger Statements

A Trigger Statement requests the Executive to send the

Local Copy of the specified Compool Block to the appropriate

remote terminal at a specified time. The specified time must

be two Minor Cycles and one Major Frame from the time the

Trigger Statement is executed. The form of this statement

is as follows:

<trigger statement>::= TRIGGER (<compool block name>),

<trigger time> <delta time>);

<trigger time>::= <numeric formula>

<delta time>::= <numeric formula>

Here the <Compool block name> is the name of the Compool block

which is to receive the value of the Local Copy at the desig-

nated critical time. Time is specified by two fields, <time>

and <delta time>. The <time> is specified in Mission Time

and is scaled in units of minor cycles. The <delta time>

field is scaled in clock units of, and has a granularity of,

one millisecond. This <delta time> field provides the fine

granularity for the TRIGGER statement. It will be in effect

added to the ',time> field by the executive in order to obtain

the designated critical time.

For a single occurrence, the <time> field should in

itself be sufficient for critical time calculations. When

multiple (occurrences are to occur spaced relative to each

other, the <delta time> field provides for finer time granu-

larity than a minor cycle. TRIGGER may not be used in

Privileged Mode.
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Example: TRIGGER(IC91RELEASE,TGO,DELTATIME);

4.3.2.9 Access Statements

The Access Statement is used in Privileged Mode tasks

to correspond to the Read Statement in normal mode tasks.

Its form is:

<access statement>::= ACCESS (<Compool block name>);

Here the <Compool block name> is the name of the Compool block

which is being directly accessed.

Example: ACCESS(PC23INSDAT);

4.3.2.10 Broadcast Statements

The Broadcast Statement is used in Privileged Mode tasks

to correspond to the Write Statement in normal mode tasks.

The form of this statement is:

<broadcast statement>::= BROADCAST (<compool block name>);

Here the <Compool block name> is the name of the Compool block

which is being broadcast.

Example: BROADCAST(IC73IMUOUT);
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4.3.2.11 Forced Read Statements

The Forced Read Statement is used in Normal Mode tasks

to rea' data from a device, upon demand of the task. There

is an inherent time delay in this statement since it must

instruct the device to send the data to the specified Corn-

pool Block. The form of this statement is as follows:

<forced read statement>::= FORCED'READ (<Compool block name; I

4.3.3 Real-Time Built-In Functions

Real-Time Built-In Functions are used by the Application

Software to "read" the value of certain real-time entities.

These are ised by the DAIS Mission Software as if they were

Built-In Functions. There are four Real-Time Built-In Func-

tions.

E EREAD

* INVOKED

* T [ME

* M NOR 'CYCLE' NUMBER

4.3.3.1 Event Read Function

EREAD yields the current value of the Event passed as its

arqument. This Event must h:ive been previously declared in

an Event Declaration. The form of this function is as follows:

,bit function caI'::: EREAD ,e\1entN)

H1ere -eventI is the name o" the event whose value is to be

IcId. The FR!FAD of an Imrlit Task state event will be ON

i, the Tuk. is in the ACrIVE state an OFF if the Task is in

the INACTVE state.
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4.3.3.2 Task Event Read Function

INVOKED is applied to a Task. It yields ON if the Task

is INVOKED, OFF if it is not. This Function may only be

applied to a Task scheduled within the Task in which the Func-

tion is used. The form of this function is as follows:

S<bit function call>::= INVOKED (<task name>)

Here <task name> is the name of the Task whose INVOKED state

is being tested.

4.3.3.3 Time Read Function

TIME reads the Mission time. This is the time since

system initialization and is measured in number of Minor

Cycles. The form of this function is as follows:

<integer function call>::= <TIME>

4.3.3.4 Minor Cycle Read Function

MINOR'CYCLE'NUMBER reads the value of the current minor

cycle number. The value read is returned as an integer with a

value between 0 and 127. The form of this function is as

follows:

<integer function call>::= MINOR'CYCLE'NUMBER
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4.3.4 Real-Time Directives

Real-Time Directives are compile-time statements which

alter or enable/disable the normal mode Real-Time Constructs.

4.3.4.1 Privileged Mode Directive

There is a single mode directive to distinguish normal

mode from privileged mode tasks. This directive must be the

first statement in a privileged mode task. Its format is:

<privileged mode task directive>:: =

PRIVILEGED'MODE'TASK;

A <privileged mode task> is a synchronous task that is effec-

tively executed at a very high priority. It is executed in

each appropriate minor cycle before all normal mode tasks.

It may directly reference the global Compool blocks, and

thus can >e used only in special situations. Its normal use

is for a task communicating with a piece o- equipment.

Tasks which are directed to be "privileged mode" must

have the following characteristics.

* Synchronous

* Short duration (i.e., appreciably less than a

minor cycle in duration)

The PRIVILEGED'MODE'TASK directive is to be used sparingly

and only to improve efficiency. While data interlock protec-

tion is insured with its usage, the ability to insure invisible

transienit error recovery has been lessened.
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4.3.4.2 Local Override Directive

The Local Override Directive a'lows Normal Mode tasks

to have direct access to the Global Copies of Compool blocks,

while still using Local Copy declarations. The use of this

directive defeats the protective mechanisms supplied by the

Executive when a Task references a Compool block.

<local copy override directive>::=

LOCAL'COPY'OVERRIDE

4.4 Executive System

The DAIS Executive isolates the physical aspects of the

DAIS federated system from the Application Software. The

Executive allows the Application Software to reference time,

remote terminals and information in other processors on a

logical level. It masks the federated nature of the system,

so that Application Software can be written as if it were to

execute on a single, virtual machine. Finally, the DAIS

Executive controls and optimizes the use of system-wide re-

sources, such as the data bus and mass memory, and provides

mechanisms for error recovery.

4.4.1 Introduction

The DAIS Executive System consists of the run-time

Executive Software and the pre-run-time Partitioning, Anal-

ysis, and LinkEdit FACility (PALEFAC). This section will

primarily deal with the run-time Executive Software. PALEFAC

is used to generate the necessary executive table information

in order to have a properly functioning run-time mission.
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The DAIS Executive Software consists of two parts: a

Local Executive and a Master Executive. Every processor in

the DAIS federated system contains a Local Executive. On

the other hand, only one Master Executive is in operation

at any given time in any given configuration. The Local

Executive controls operations peculiar to a processor,

including control of the Application Software within the pro-

cessor and local participation in the I/O processes. The

Master Executive controls system-wide operations, including

control of the data bus, of mass memory, and system-wide

initialization and error recovery.

The architecture of the DAIS system implies a separation

of functional components, the control of one component over

another, and a dependence of one component on another. The

DAIS system architecture is depicted in Figure 7 showing

the separation of hardware and software functions. The

Applications Software is functionally isolated from the hard-

ware by the executive software just as the avionics subsystems

are isolated from the computers by the Remote Terminals and

Data Bus.

DAIS is a real-time system in which the activities of the

Applications Software are coordinated with the passage of

real-time in the outer world. The minimum granularity of

time to which coordination occurs is known as the Minor

Cycle. It is possible to specify or determine the time of

an action within one Minor Cycle, but not to a fraction of

a Minor Cycle. Thus, the I/O interactions, interprocessor

interactions, and task interactions may occur, may be known,

and may be controlled within the framework of the Minor Cycle

time granularity. This timing is a requirement for I/O con-

trol, interprocessor coordination and synchronization, and

the Local Executive process handling.
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There is one case in which a finer time granularity con-

trol may occur with respect to interaction with the outer

world. it is possible to send a sequence of messages to the

outer environment with a timing, relative to each other,

finer than a Minor Cycle. But this sequence itself cannot

be centerd better than a Minor Cycle with respect to the

outer world.

Because of the multi-processing nature of the DAIS sys-

tem, a designated active Master Executive within one pro-

cessor controls the processor configuration. It responds

to data bus transmission errors, and controls communication

between data bus terminal units. The Local Executive pro-

vides the interface between the application functions and

the Master Executive (Bus Controller) functions. In addition,

there is an interface between the Master Executive and the

application functions with respect to system configuration,

initialization, and recovery.

The Applications Software controls the execution of

software functions by invoking the Executive to schedule and/or

activate processes, events, and I/O.

4.4.1.1 Synchronous Action

Actions performed by the DAIS Executive are divided into

two classes. One class of actions is performed only in re--

sponse to a request from one of the components of the DAIS

system; these are the asynchronous actions. The other class,

synchronous action, is performed periodically.

In order to provide a standard way to specify the periodi-

city of synchronous actions, time is divided into Major Frames

and Minor Cycles. A Major Frame is the longest period of time

which may be specified for a synchronous action; a Minor Cycle

is the shortest. The number of Minor Cycles to a Major Frame

is fixed upon initialization of the DAIS system. This number

is an inte'jral power of 2. within each Major Frame, Minor

Cycles are numbered starting with 0.

62



Synchronous actions include control of the process space

of the DAIS processors, and transmission of data between the

various components of the DAIS system.

4.4.1.2 Asynchronous Actions

Asynchronous actions are performed upon request by a

component of the DAIS system, either software or hardware,

and are performed at or near the time when that request is

made. The majority of asynchronous activities occurring

within the DAIS system do not require the intervention of the

Executive. For instance, setting a variable or calling an

internal procedure is an asynchronous activity which is per-

formed by the processor hardware. In general, when one DAIS

component, either hardware or software, wishes to affect the

data space or process state of another component, it is nec-

essary to invoke an asynchronous action on the part of the

DAIS Executive.

All asynchronous actions have an inherent latency between

the time the request is made and the time the action is per-

formed. This latency depends upon the delays inherent in

communications between hardware components, whether within

a single processor or via the DAIS Multiplexed Data Bus, and

upon the conflicting demands of other asynchronous requests

and synchronous actions.

4.4.2 DAIS Executive Functional Description

The DAIS Executive Software is divided into two major

functions: the Local Executive, and the Master Executive.

In general, the Local Executive controls processes involved

with a single processor, while the Master Executive controls

processes concerned with the functioning of the system as a

whole.
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4.4.2.1 Local Executive

Each of the DAIS processors contains a Local Executive.

This Local Executive controls the state of the real-time

entities existing within its processor, specifically Tasks,

Global Copies, and copies of Events (which, like Compool

Blocks, may exist in multiple copies, one in each processor

in which the Event is referenced).

The Local Executive performs services requested by Tasks

in Real-Time Statements. Since a Real-Time Statement executed

in one processor may affect the state of a real-time entity

in another processor, the Local Executive must be able to send

Asynchronous messages requesting services of other processing

units (e.g., to Schedule a Task or Update a Compool Block).

In addition, the Local Executive must receive such requests

from other processors, and must service them properly.

Unlike Asynchronous processes, Synchronous processes are

basically under the control of the Master Executive since

synchronization is a process involving all processors. How-

ever, the Local Executive must also participate in Synchronous

processes by signalling Minor Cycle Events and preparing for

the reception and transmission of Synchronous Compool Block

Update Messages.

Finally, the Local Executive must be capable of starting

its processor, and of recognizing and processing errors that

may arise.

4.4.2.2 Master Executive

The Master Executive controls communication between the

separate processors and remote terminals of the system. This

communication exists only in the form of messages which can

be sent across the bus. Thus, one major function of the

Master Executive is Bus Control.

64



Each Remote Terminal or processor can request to send

Asynchronous messages. There are also Synchronous messages

which must always be sent at a given period and phase of a

Major Frame. There are also Critically Timed messages which

are sent at a specified Mission Time. In addition, the

Master Executive has its own messages which are used to check

on the correct functioning of the various system components.

The primary function of the Master Executive is to con-

trol the sending of these messages. The secondary function

is to take corrective action when one of these messages is

or appears to be incorrect. The corrective action taken may

be of a very simple type; under carefully controlled condi-

tions the message is resent. If this fails, the error cause

is assumed to be hardware which has ceased to function

properly. Either a logical path around the non-functioning

hardware must be found, or the scope of the mission must

be changed. This is known as System Configuration Manage-

ment. System Configuration Management keeps track of the

status of all processor and Bus-related hardware used during

the mis3ion, and determines the action to be performed when a

hardware element fails.

The Master Executive as discussed above is a set of

functions which exist in one processor. This processor is

called the Master Processor and the BCIU attached to that

processor is called the Master BCIU.

To allow for the possibility that the Master Processor

or the Master BCIU may fail completely, a second Master

Executive exists in another processor. This second Master

Executive is called the Monitor. The Master Executive must

periodically send a message to the Monitor which informs the

Monitor that the Master Executive is still functioning. If

the Monitor does not receive this message, it switches to

Master Executive mode and takes control of the system. This

is called Backup. Recovery exists when the Master Executive

detects that the Monitor is not functioning.
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Backup may also occur on the failure of a remote processor.

If a processor other than the Master or Monitor fails, the

Master may cease operation, thus allowing the Monitor to take

control of the system. An important aspect of Backup is that

the system is now performing a more limited mission. Once

Backup occurs, only certain specified critical functions may

be performed.

once Backup has occurred, the pilot has an option to

reload the system using fewer than the original number of

processors. This is called Reconfiguration. Reconfiguration

is started by pilot initiation through the Processor Control

Panel (PCP).

A third part of the Master Executive is the Startup/

Loader. The function of the Startup/Loader is to load the

mission software from Mass Memory into all processors within

the system configuration. The Startup/Loader receives con-

trol from a Read Only Memory (ROM) Loader.

The ROM Loader gains control of its processor upon

power up. It examines the bus and, if not active, assumes

control. It then polls all processors in the initial config-

uration to determine a valid load. The ROM Loader then super-

vises the loading of the Master Executive from Mass Memory

into the Master processor, which by default will have the

lowest bus address of all processors. Upon completion ofI the loading, the ROM Loader then hands control of the system
to the Startup/Loader.

If, when the ROM Loader comes up, the bus is active, it

goes into an idle loop until one of the following happens:

" commands are received from another ROM Loader

(i.e. , load a Master Executive)

* commands are received from the Startup/Loader

(i.e., load this processor as a Remote)

" a predetermined time has passed, in which case

the ROM Loader retries the bus.

66



4.4.3 Interfaces with Real-Time Software

4.4.3.1 General Overview

The DAIS Executive has two principle functions: to pro-

vide services to the Applications Software, and to control

system-wide functions, such as initialization and recovery.

The necessary tasking and I/O interactions of the Applica-

tions Software form the functional requirements for the

Local Executive Services. The DAIS System Control Proce-

dures form the functional requirements with respect to

system-wide control.

The DAIS Applications Software is composed of Tasks,

Comsubs, Compool blocks, and Events. Tasks and Comsubs

are processing modules, containing executable code and local

data. Compool blocks are data modules used for communica-

tion between separate Tasks, and between Tasks and the

outer world. Events are boolean values used to control the

process state of Tasks. Real-Time Statements and Real-Time

Built-In Functions are used by Tasks to control and refer-

ence the state of other Tasks and the values of Events and

Compool blocks.

4.4.3.2 Tasks

Tasks are processing modules which can be controlled
and executed independently.

4.4.3.2.1 Task States - In order to understand the inter-

actions of Tasks, it is necessary to understand the possible
"states" that these dynamic processes may have. At any

given instant, each Task in the DAIS Mission Software sys-

tem has one of, the states as shown in Figure 8. It

should be noted that not all states are mutually exclusive;

in Figure 8 the tree structure shows a subsetting rela-

tionship with respect to the various states. Thus,
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INACTIVE and ACTIVE are both substates of INVOKED, and hence,

a Task which is INACTIVE (or ACTIVE) is simultaneously also

in the INVOKED State. Similarly, a task which is SUSPENDED

would also be INVOKED, ACTIVE, and DISPATCHABLE.

Figure 8 also indicates the method of transition

from one state to another. For example, a SCHEDULE statement

will put an UNINVOKED task into an INVOKED state, while a

CANCEL statement will put an INVOKED task into an UNINVOKED

state. The meaning of each of these Task states and the

means of transition between them as shown in Figure 9

is now discussed in detail.

4.4.3.2.1.1 INVOKED/UNINVOKED - Immediately following system

initialization, one Task, the Master Sequencer, is INVOKED

by the Executive, while all other Tasks remain in the UNIN-

VOKED state. Thereafter, Tasks can be put into the INVOKED

state by a SCHEDULE statement or put into the UNINVOKED state

by a CANCEL statement executed within other Tasks.

4.4.3.2.1.2 ACTIVE/INACTIVE - After a task has been SCHEDULEd

and thus made INVOKED, it is in the INACTIVE substate; however,

it has the potential to become ACTIVE, depending upon its

Event Condition Set. The Event Condition Set is a collection

of Conditions, each of which may be either "ON" or "OFF".

Each Condition has a "desired" value. When all the conditions

in the Event Condition Set have their desired values, and if

the Task is INACTIVE, the Executive will put it into the

ACTIVE state. It is possible for a Task to have a null Event

Condition Set, in which case it becomes ACTIVE immediately

upon becoming INVOKED.

A Task may return from ACTIVE to INACTIVE state from

either of two causes: because it completes execution, or

because it is forcibly TERMINATEd by another Task. In

either case, immediately after it returns to the INACTIVE

state, the Event Condition Set is evaluated. If all of the
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Event Conditions have their desired values, then the Task

is immediately put back into the ACTIVE state.

4.4.3.2.1.3 WAITING/DISPATCHABLE - When a Task is ACTIVATEd,

it is also immediately put into the DISPATCHABLE state. If,

at any point during its execution, a Task executes a WAIT

Statement, specifying either a desired value for an event or

a time, the Executive will place the Task into a WAITING

state until the condition is satisfied. When this WAIT

condition is satisfied, the Task will become DISPATCHABLE.

4.4.3.2.1.4 READY/SUSPENDED/EXECUTING - All DISPATCHABLE

Tasks are capable of being executed and should theoretically

be executed at any instant within a single DAIS Processor.

Tasks are therefore further ordered by Priority in order to

resolve these possible conflicts. Whenever the Executive

passes control to the Application Software, the highest

Priority DISPATCHABLE Task is selected and executed. Since

it is not in general possible to immediately execute all

DISPATCHABLE Tasks, this state must be further differentiated.

There are three DISPATCHABLE substates. If a Task is ACTIVE

but has not yet been executed, it is said to be READY. If it

has been in the process of execution, but has been interrupted

by a higher priority Task, it is said to be SUSPENDED. If it

is executing, it is said to be EXECUTING.

4.4.3.2.2 Task Hierarchy - Any Task may be SCHEDULEd by

exactly one Task, which is then called its Controller.

All of the Tasks SCHEDULEd by a single Task are said to be

its "sons". If a Task has no sons, it is said to have no

"descendents"; otherwise, its "descendents" are sons and all

of the descendents of its sons. The relationships of Con-

troller and son define the Task Hierarchy.
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4.4.3.2.3 Priorities - taytmthere may be many pro-

cesses potentially executable within any DAIS processor.

These include Tasks, Executive actions invoked by Tasks with-

in the processor, and Executive actions invoked by remote

terminals or other processors. In order to resolve conflic-

ting demands on the processor, a system of priorities has

been adopted. Tasks are divided into two classes: Normal

Mode Tasks and Privileged Mode Tasks. As a class, Privileged

Mode Tasks and Executive actions have a higher priority than

Normal Mode Tasks. Within each class, conflicting demands

on the CPU are resolved as described below.

4.4.3.2.3.1 Normal Mode Tasks - Normal Mode Tasks are linearly

ordered by priority. At any time, if no Executive actions are

called for and if no Privileged Mode Tasks are Active, the

CPU will execute the highest priority Active Normal Mode Task.

If during the execution of a Normal Mode Task, an Exe -

tive action is called for or if a Privileged Mode Task or a

Normal Mode Task with higher priority becomes Active, the

original Task is immediately placed into a Suspended state.

4.4.3.2.3.2 Privileged Mode Tasks - Privileged Mode Tasks

are not ordered by relative priority; instead, they are

executed on a first come, first served basis. When a Privi-

leged Mode Task becomes Active, it is executed immediately.

Once a Privileged Mode Task is in Executing State, it is in

control of the processor. It can be suspended only when it

invokes an Executive action by means of a Real-Time Statement.

Upon completion of the action, control is returned to the

Task.

Because a Privileged Mode Task cannot be interrupted by

an Executive action requested outside of itself, the Compool

blocks which it references will not be altered during its

execution, unless they are modified by the Data Bus or by

th,- Task itself. Since only Synchronous Compool Blocks can

mj odified directly by the Data Bus, and then only during
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specified Minor Cycles, it is possible to "protect" a Privi-

leged Mode Task against the Data Bus by scheduling it on

Minor Cycles during which the Synchronous Compool Blocks

which it accesses are not accessed by the Data Bus. There-

fore, a Privileged Mode Task is allowed to bypass the pro-

tective mechanisms which a Normal Mode Task must use when

referencing Compool Blocks.

4.4.3.3 Comsubs

In addition, to Tasks, the DAIS Application Software may

contain processing modules known as Comsubs. A Comsub is

a computational module which may be called by one or more

Tasks and/or Comsubs. A Comsub may communicate with the

outside world only through passed parameters.

When a Task calls a Comsub, it is considered to be exe-

cuting within the code of that Comsub. Thus, it is possible

for one Task to be Suspended within the code of a Comsub at

the same time that another Task is Executing within the same

Comsub. In short, Comsubs are re-entrant.

If two Tasks in different processors call the same Comsub,

the Comsub is duplicated in both processors.

4.4.3.4 Compool Blocks

A Compool block may be referenced by Tasks in more than

one processor and also, possibly, by a remote terminal. It

may therefore be necessary to transmit Compool blocks across

the Data Bus. In order to minimize such use of the Data Bus,

each processor which uses the values of a Compool block con-

tains a Global Copy of that block. In addition, any remote

terminal which sets or uses the Compool block is considered

to have a Virtual Copy of the block.

Normal Mode Tasks are not allowed to reference the values

within a Global Copy directly. This restriction prevents one

Task from referencing data which has been partially updated

by another Task. However, Privileged Mode Tasks are allowed
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to reference individual values within Global Copies directly,

since they cannot be interrupted by another Task or by an

Executive action. No other processor or remote terminal

is able to set a Global Copy while a Privileged Mode Task

is using it, or to use a Global Copy while a Privileged Mode

Task is setting it.

4.4.3.4.1 Local Copies - A Normal Mode Task is allowed to

reference a Compool block only through the use of a Local

Copy. A Local Copy is a data aggregate internal to the Task

which uses it. A Local Copy has exactly the same length and

internal organization as the Compool Block with which it is

associated. The only interfaces Normal Mode Tasks may have

with Compool Blocks are:

" They may READ the Compool block into their Local

Copy

" T'iey may WRITE from their Local Copy to the Compool

block

• They may TRIGGER the Local Copy

9'rhey may READ'DEVICE the Local Copy

0'They may WRITE'DEVICE the Local Copy.

READing and WRITEing move the contents of the Local Copy in

their entirety to and from the Compool block. TRIGGER is a

special statement used only for critically timed Compool

blocks.

Since READ, WRITE and TRIGGER invoke Executive actions

that operate in Privileged Mode, the use of these statements

guarantees that a Normal Mode Task will never reference par-

tially updated data. After it has been READ, or before it

has been WRITTEN, the data within a Local Copy may be used

and set indiscriminately, without concern for affecting

the value of the Compool Block.

74



4.4.3.4.2 Categories of Compool Blocks - Compool blocks are

divided into three categories: Input, Output, and Intertask.

Input Compool Blocks are used to input data from remote ter-

minals which may then be used by Tasks. Output Compool Blocks

are set by Tasks, and their values are output to remote termi-

nals. Intertask Compool blocks are used for communication

between Tasks.

Since a Compool Block may have multiple Global Copies,

each in a different processor and possibly a Virtual Copy in

a remote terminal, it is necessary to send Compool Update

Message(s) across the Data Bus to maintain consistency between

the various copies. Compool blocks are further classified

as Synchronous, Asynchronous, and Critically Timed.

The various categories of Compool Blocks, and the

ways in which they may be referenced by Tasks, are shown in

Table 7.

4.4.3.4.2.1 Synchronous Compool Blocks - All Global and

Virtual Copies of a Synchronous Compool Block are updated

from a single, authoritative copy, either a Global Copy in

a processor or a Virtual Copy in a remote terminal. The

Update Messages are sent at a specified period and phase.

Note that these Update Messages are sent in a pre-determined

sequence by the Master Executive, and are invisible to the

processor receiving it. Therefore, it is important that

Privileged Mode Tasks which reference Global Copies of the

Compool block do not run during the Minor Cycles when the

Update Messages are being sent, since it is impossible to

guarantee data integrity during these Cycles.

When a Synchronous Compool Block is WRITTEN within a

Task, the data is simply moved from the Local Copy to the

Global Copy within the same processor; the other Global

Copies or Virtual Copy are updated from the Copy periodi-

cally, as described above.
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4.4.3.4.2.2 Asynchronous Compool BLocks - All Global and

Virtual Copies of an Asynchronous Compool Block are updated

when any one of those copies is updated, either by a WRITE

statement or a BROADCAST statement, within a Task, or upon

request by a remote terminal. Note that a processor con-

taining only Tasks which WRITE, but do not READ, an Asyn-

chronous Compool Block need not contain a Global Copy of the

block.

If a Compool block is referenced only by Tasks within a

single processor, the distinction between Synchronous and

Asynchronous is immaterial; however, it is preserved for

the sake of consistency.

4.4.3.4.2.3 Critically Timed Compool Blocks - Critically

Timed Compool Blocks are a special category used only for

Output. They are sent to their associated remote terminals

at a time specified in a TRIGGER statement.

More precisely, the data in a Local Copy is sent by a

TRIGGER statement to a Global Copy in the Master Processor,

where it is held until the precise time specified in the

TRIGGER statement, at which time it is sent to the associ-

ated remote terminal.

4.4.3.4.3 Minor Cycle Tag Words - The first word of every

Global Copy of a Compool block is a Minor Cycle Tag Word,

which indicates the Minor Cycle during which the Global

Copy was last updated. When a Global Copy is updated by

the BCIU, this Tag Word is created by the BCIU. When a

Global Copy is WRITTEN by a Task, the Tag Word is created

by the Executive.

4.4.3.5 Events

Events are used for control between tasks and between

a task and the environment. An event has but two possible

values: ON and OFF. Events may often, however, be treated

in two different fashions. That is, a single event may be
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considered to be either a latched event or an unlatched event.

To consider an event as latched is simply to consider its

state as ON or OFF. To consider an event as unlatched is to

consider the pulse, or signal, sent to the event. That is,

to consider whether it is, at a given instant, being set ON

or OFF (equivalently whether it is sent a positive pulse or

a negative pulse). A given evernt can be considered by one

Task as a latched event while simultaneously be considered

by another Task as an unlatched event.

4.4.3.5.1 Event Types and Usages - Table 8 shows the

various types of Events in the DAIS Mission Software system.

It also indicates the statements in wqhich these events may

be referenced within the DAIS Mission Software system. There

are two broad types of events: Explicit Events and Implicit

Events. Explicit Events are named and used by the Applications

Software programmer. They contain the meaning which the pro-

grammer gives them. Implicit Events are associated with some

system meaning and must use the appropriate naming conventions

or mechanisms in order to access this system information.

In particular, Implicit Events are either associated with a

Minor Cycle (via the SCHEDULE statements PHASE=, PERIOD=

clause), a Task state, or the updating of a Compool block.

In Table 8 the usage and meaning of each of these

event types with respect to the Real-Time statements is

indicated. Often a particular event type may not be meaning-

fully used within some Real-Time statement, and thus it is

prohibited in that usage. While the table segregates the

Explicit Events into latched and unlatched cases, it should

be noted that the Implicit Task state and the Implicit

Compool block events can also be treated in these two fashions,

but not always meaningfully.
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Explicit Events are under the Applications Software pro-

grammer's control. Minor Cycle events are under systems con-

trol and only appear in the SCHEDULE statement via the PHASE-,

PERIOD= clause. Task state events have an associated Task

Activation Event. The Task state event is set ON when the

Task is ACTIVATEd and set OFF when the Task returns to the INAC-

TIVE or UNINVOKED state. The Activation Event associated

with a Task has the same name as the Task. When a Task State

event is used by the INVOKEd function, the information re-

turned is with respect to the INVOKEd state of the task and

not the ACTIVE state.

Compool Block Events are set ON when the Compool Block

is updated, either by a Task or a remote terminal. The

Update Event associated with a Compool block has the same

name as the Compool block.

4.4.3.5.1.1 EVENT - An event name must be declared via an

EVENT declaration if it is used in either a WAIT, SIGNAL

or EREAD statement. If the event name only appears in a

SCHEDULE and/or INVOKED statement, it should not be de-

clared via an EVENT statement. This usage of the EVENT

declaration is strictly followed for the DAIS Mission Soft-

ware.

4.4.3.5.1.2 SCHEDULE - All forms of events may appear

within a SCHEDULE statement. The differentiation between

latched and unlatched occurs through the appropriate use

of the IF (latched) and UPON (unlatched) clauses of the

SCHEDULE statement. The event names used in these clauses

could be either Explicit event names or the Implicit Task

state or Implicit Compool block event names.

It should be noted that the use of the Implicit Task

statement event in all of the Real-Time Statements is asso-

ciated with the ACTIVE state of the Task. The one exception

is the use of the Real-Time INVOKED function which will test

for the INVOKED state of the Task named.
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It is only in SCHEDULE statements that Minor Cycle

events may occur. However, even here they do not appear

directly, but rather via the use of the PHASE=,PERIOD= clause.

It does not make sense to treat an Implicit Compool block

event as a latched event since it will be ON. Rather, it is

of interest to treat it as unlatched; a pulse is sent when

the Compool block is updated although the state is already ON.

4.4.3.5.1.3 WAIT - The WAIT statement may be either of latched

or unlatched formand treat either Explicit events, or the

Implicit Task state or Implicit Compool block events.

4.4.3.5.1.4 SIGNAL - Only Explicit events may be SIGNALled

by the Applications Software. It is prohibited to SIGNAL

any Implicit event. Implicit events reflect the systems

state and are not under direct Applications Software control.

It should be noted that the differentiation between

latched events and unlatched events does not have any meaning

for the SIGNAL statement. By setting the state of an event

to ON, it both rnakes the state ON and is a positive pulse.

Similarly, setting the state of an event to OFF both makes

the state OFF and is a negative pulse.

4.4.3.5.1.5 EREAD - The use of the EREAD function allows

access to the state of an event. EREAD will return the value

of ON or OFF. Explicit events and Implicit Task state events

may be EREAD.

It should be noted that an EREAD of a Compool block is

meaningless since its value is always ON.

Since EREAD returns the state of the event, it does not

have meaning with respect to unlatched events.
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4.2.3.5.1.6 INVOKED - An INVOKED function applies only to

Implicit Task state events. It will return the information

as to whether the named Task is INVOKED (i.e., ON) or UNIN-

VOKED (i.e., OFF).

Any INVOKED function does not require an EVENT declara-

tion because it is accessing the TASK state event and not

the Implicit Activation event.

4.2.3.5.2 Event Condition Sets - Associated with each SCHEDULE

statement is its Event Condition Set. Heuristically, when the

set of event conditions is met, the Task will become ACTIVE.

There may be up to 16 different Conditions in an Event Condition

Set, where the time field (PHASE/PERIOD) counts as one Condition.

Within an <or set> there can be an unlimited number of

events "or"ed together. This arises from the fact that each

of the 16 Conditions of the Event Condition Set is assigned

a single bit in the Task Tables. There are 16 such bits for

each task. This also indicates the problem with the <or set>.

All events of a given <or set> map to the same bit in the

Task Table. Thus, the <or set> expression is not a true "or

of all of the events "or"ed, together. Instead, the or set>

is the "last state" change within the <or set> of events.

If the or sets were:

A or B = ON

then it would be satisfied if either A or B were signalled

ON. However, if both A and B were currently ON, and say B

were signalled OFF, then the 'or set> would become unsatisfiedI
since it reports the last state of any of the events within

its <or set> . B was the last to change, and this change

was to OFF, thus not fulfilling the required condition.
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With these limitations in mind, the state of events and

the fulfillment of an Event Condition Set can be understood

by the following rules.

a. All Conditions are initially OFF when the system is loaded.

Subsequently, they receive values according to the following:

1. When any of the Events associated with a Condition is

signalled ON either by a Task or by the Executive,

the Condition is set ON.

2. When any of the Events associated with a Condition is

signalled OFF, the Condition is set OFF.

3. Unlatched events have a life span with respect to a

given Task. When a Task is SCHEDULEd, all of its

unlatched events are guaranteed to be unfulfilled.

Upon the Task becoming ACTIVE, all unlatched events

are again made to be unfulfilled.

4. While it is SCHEDULEd or while it is ACTIVE, the

unlatched event conditions are being accumulated in

order to fulfill the Event Condition Set. They are

only reset as indicated above.

b. When all the Conditions of a Task which is INVOKED but

INACTIVE have their desired values, the Task becomes

ACTIVE.

4.4.3.6 Time

The DAIS Application Software may reference time in
three ways: as Mission Time, as Relative Time, or as Cyclic

Time. Mission Time is a count of elapsed Minor Cycles since

system initialization. Relative Time is a count of Minor

Cycles in advance of the point at which the reference to

time is made. Cyclic Time is used to specify synchronous

actions. It is referenced in terms of period and phase.

Period is the number of Minor Cycles between successive oc-

curcences of the action. The maximum specifiable period is

a Major Frame. Phase is the offset of the first occurrence

of the action within a Ma'jor Frame from the start of the
Major Frame, measured in terms of Minor Cycles.
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Thus, for instance, an action specified as period=16,

phaset3 will occur on Minor Cycles 3, 19, 35 It is

n'cessar" that 0-phase-period.

4.4.3.7 Real-Time ,Interfaces

The Local Executive provides the interface to each of

the Real-Time constructs. These are the:

" Real-Time Declarations

" seal-Time Built-in Functions

" !.eal-Time Statements

" real-Time Directives.

While the first three interfaces provide access to the

Im-xecutive routines, the Real-Time Directives cha:ove the
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Statement Action

Local Copy Disable

Global Copy Enable

Re ad Disable

Write Disable

Access Enable

Broadcast Enable

Read Device Disable

Write Device Disable

Tigr Disable

Table 9.

Result of Privileged Mode Directive

4.4.3.7.2 Local Copy Override - The Local Copy Override Directive

allows Normal Mode Tasks to have direct access to the Global Copies

of Compool blocks, while still using Local Copy declarations. The

use of this directive defeats the protective mechanisms supplied

by the Executive when a Task references a Compool block. Its

use should be in general forbidden.

4.4.3.8 Master Executive Interfaces

4.4.3.8.1 Startup/Loader - The hardware interfaces for the

Startup/Loader are:

*The Mass Memory, from which it reads programs to

be loaded

*The Processor Control Panel (PCP) from which it

reads information to determine which functions

it will perform

*The BCIU. The Startup/Loader will set the KC

registers.
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The Software interfaces through the table the Startup/

Loader creates, which contains the address at which to start

processing and the storage protection keys.

These relationships are shown in Figure 10.

4.4.3.8.2 Master Initialization - Master Initialization re-

ceives control from the Startup/Loader. It initializes

certain Executive Tables in its processor. These Tables are

set to schedule both the Master Sequencer and a task to per-

form CPU hardware tests. These relationships are shown in

Figure 11.

4.4.3.8.3 Bus Ccritrol Interfaces - Bus Control is the part

of the Master Executive which controls sending messages over

the DAIS Bus. Figure 12 shows the interfaces of the various

parts of the Bus control (shown in the double line boxes) with

the rest of the system. Each of the elements is discussed

below.

a. Bus controller - This function sets the BCIU registers

for sending the Bus messages.

b. Critically Timed Message Processing - Critically Timed

* message Processing receives messages from either the

Local Executive or Error Processing. it also processes

* the Master Executive Minor Cycle event. It sets Timer A

to interrupt at the proper mission time to send this

message. When Timer A interrupts, Critically Time Message

Processing checks the type of message at the top of its

queue. if this message is a normal type, that is, a cri-

tically timed message scheduled by the Local Executive,

the Bus Controller is called to send the Message. If

the Message at the top of the queue is the Master Execu-

tive Mi nor Cycle Event, then the Minor Cycle Check func-

tion will be called.
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MEMORY P C P
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LOADER

Startup
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LOADED°

SOFTWARE

Note: Double arrows
indicate
created by
Startup/Loader .'

Figure 10. Startup/Loader Interfaces
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c. Minor Cycle Check - Minor Cycle Check is invoked by

a BCIU Halt, by calls from the System Startup (as

part of the starting sequence), or by Critically Timed

Message Processing.

During system initialization, Master Function

Mode Command generation does not start until the Master

Sequencer has performed its initialization. During

normal operation, Master Function Mode Commands must

wait for a BCIU Halt (the end of the previous cycle's

synchronous bus list processing), and an indication

from Critically Timed Message Processing (indicating

it is time for a new Minor Cycle). If a Minor Cycle

should start, the Bus Controller is called to send

Master Function Mode Commands to all Remote Proces-

sors and then transfer control to the Master Proces-

sor' s Local Executive to start a Minor Cycle.

d. Minor Cycle Start - After the Local Executive in the

Master Processor has done its Minor Cycle Processing,

it calls Minor Cycle Start. Minor Cycle Start then

waits until all other processors have received the

Master Function Mode Com..mand then starts Synchronous

Processing. It returns control to the Local Executive.

e. Synchronous Processing - the Synchronous Instruction

4 List (SIL) is obtained for this Minor Cycle. Then

control is passed to the Bus Controller to be started.

When Synchronous Processing is complete, the SIL Done

Event is set ON.

f. Asynchronous Processing - Asynchronous Processing re-

ceives Asynchronous Request Vectors either from the

Local Executive in the Master Processor or from BCIU

interrupts. The message to be sent is found and sent

by the Bus Controller. Asynchronous Processing may

also invoke the Local Executive for an Asynchronous

Message received or transmitted so that the Local

Executive may perform the necessary processing.
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g. Error Processing - Error Processing is always invoked

by a BCIU generated Interrupt. Examination of the

BCIU registers will indicate the cause of the error

and indicate the action to be performed. A Bus error

may indicate that a System Component has failed. If

so, System Configuration Management will be called to

handle the problem.

h. Bus Control in Remote Processors - Figure 13 shows

the relation of Bus control to the other processors.

The BCIU acts as the extension of the Master Executive.

The Local Executive sets the Status Code Register when

it wishes to send an Asynchronous Message. When the

message has been sent, the Local Executive will be

interrupted. A similar interrupt occurs when an

Asynchronous Message is received. A different inter-

rupt occurs to denote the Master Function Mode Com-

mand, which signifies the start of a new Minor Cycle.

4.4.3.8.4 Monitor/Backup Interfaces - Monitor/Backup is

that software which resides in the Monitor Processor in order

to determine when to assume control.

The Monitor/Backup interfaces with the Master Executive

through messages received across the DAIS Bus. Figure 14

shows this inter-relationship.

The Monitor is waiting for the Master to fail. The

Master Executive has to send the Monitor a message that it

has not failed, otherwise, the Monitor will take control

of the DAIS System. The Monitor may also be invoked by the

applications software. This Backup action is initiated if

the applications code detects an error and wishes to force a

Monitor takeover. In addition, any permanent hardware errors

detected by the System Configuration Management must also be

sent to the Monitor.

91



B CI U

LOCAL

EXECUTIVE

Figure 13. Bus Control in Remote Processors
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4.4.3.8.5 System Configuration management Interfaces-

System Configuration Management interfaces with:

a. The Bus Control to detect permanent device failures and

take corrective action.

b. The Monitor .to inform it of permanent device errors.

c. The Local Executive, which generates error indications

for Local Executive detected conditions.

d. The Master Sequencer, in order to initialize or reini-

tialize Applications Software.

e. The Applications Software, when a permanent device fail-

ure within an RT is detected by Zus Control, System

Configuration Management informs the Applications

Software of this fact.

Figure 15 shows che System Configuration Management

interface relationships. If the Applications Software no

longer wishes to receive messages from certain RT subaddresses,

it informs the Subsystem Status Monitor. Usually, this

means the Applications Software has detected a failure within

the remote terminal subaddress and no longer wants that data.

Applications Software may also detect an unrecoverable condi-

tion and inform System Configuration Management of this con-

dition. In this case, System Configuration Management will

either restart the Master Sequencer or invoke Monitor/Backup.

4.4.3.8.6 Reconfiguration Interfaces - Reconfiguration

receives its control from two separate inputs:

* The System Configuration Management Indication

that at least one active processor has failed.

* Data from the PCP.

Reconfiguration processing controls the loading and initi-

alization of the new configuration, and is initiated upon

pilot request.
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4.4.3.8.7 Mass Memory Control Interfaces - Mass Memory

Control Interfaces with:

* The Bus Control to manage the bus protocol of

interrupts.

* The Local Executive to receive indications of

requested data transfers.

* The System Loader to load all active processors

within a configuration from mass memory.

Figure 16 shows the interface relationships. No

request of Mass Memory Control may exceed the thirty-one word

limit which is imposed by the MIL-STD 1553A bus protocol

and DAIS asynchronous protocol.

System
Loader

Bus asMmr oaControlMaseor

Figure 16. Ms
Mass memory Control Mmr
Interfaces
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4.4.4 Hardware Interfaces

The Executive Software must interface with particular

pieces of hardware. In the DAIS system, these consist of:

" DAIS Multiplex Data Bus

" Remote Terminals

" Bus Control Interface Unit

" DAIS Processor: AN/AYK-15

" Mass Memory

* Processor Control Panel

e Advisory Caution Lights

4.4.5 Interface to PALEFAC

The DAIS Executive must interface with two elements of

non-Real-Time software, PALEFAC and the Language Translators.

PALEFAC provides the Executive Tables which are the

primary data base of the DAIS Executive. These tables include:

*The Tasking Tables, which describe the states and

inter-relations of Tasks and Events.

*The Compool Area, which contains the Global

Copies of Compool Blocks.

" The Data Descriptor Blocks, which describe

the Compool blocks.

* The I/O Tables, which control Synchronous and

Asynchronous Data Bus traffic.

The PALEFAC-produced Executive Tables are described in

detail in the PALEFAC Pre-Processor/PALEFAC-Mission Software

Interface Control Document. The tables generated are speci-

fied in the detail design of the Executive Software (Local

Executive and Master Executive) requirements.
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4.5 Applications Software

The DAIS Applications Software requirements for the

OFP are derived from existing aircraft implementations but

contain some significant differences reflecting the innovative

controls and displays that DAIS is designed to implement.

The software structuring of the DAIS Operational Flight

Program differs from that of most existing fleet aircraft for

a number of reasons. First, the top-down structuring of the

DAIS OFP supports a structure for future functional expansion

with minimal cost impact. Secondly, the structure of the

DAIS QFP allows for easy transferral of the software to any

machine that supports J73/1. Thirdly, the DAIS OFP had been

coded to exploit the facilities and capabilities of the DAIS

Executive system as presented by the DAIS Real-Time Interface.

An overview of the major functions of the DAIS Applica-

tions Software will be presented. The interfaces to flight

hardware and to the DAIS Executive software are delineated,

and the interaction between the elements of the applications

software is described.

4.5.1 Equipment Interface

The DAIS Applications Software is designed to interface

to sensor, pilot control, display and mass memory unit hard-

ware. Table 10 delineates the mission a Configuration and

shows the various equipments that required interfacing

4.5.2 Software Interface

The DAIS Applications Software executes in an environ-

ment maintained by the DAIS Executive software. The Execu-

tive provides real-time task control, data base management,

interprocessor communication, remote terminal communication
and mass memory services. The Mission Software is designed

to minimize the complexity of these operations to the Appli-

cations programmer. A description of the applications!

executive interface from a programming standpoint is contained

98

...........................



TABLE 10. MISSION a CONFIGURATION

Weather: Night - Clear (Visual Flight
Rules [VFR])

Target: Fixed Ground Target

Weapons: MK-82 LDGP Bombs

Threats: None

Simulated
Sensors: INS(SKN2416)

Laser Ranger
Air Data Sensors
Radar Altimeter (APN-141)
ILS (ARN-58A)
TACAN (ARN-l18)

Core Element
(Hardware): DAIS Processors (2):

Master & Remote #1
BCIUs (2)
RTs (2)
Controls and Displays

RT (1) C&D Mass Memory
VSD SCU
HSD HUD
MPD-l PCP
MPD-2 MPDG (1)
IMFK DSMU
DEK AP
MMP

Support Facility: Integrated Test Bed

Functions: Navigation - Inertial/Baro-
Damped

Steering - Command NAV
TACAN
ILS

Navigation Update - Flyover
HUD/Laser

Ranger
FLIR/Laser

Ranger

am



TABLE 10. MISSION a CONFIGURATION (con't.)

Acquisition/Cueing - Pilot/HUD

Pilot/FLIR

Target (or OAP) Fix -
HUD/Laser Ranger
FLIR/Laser Ranger

Weapon Delivery - CCIP/Auto
CCIP/Manual

Stores Management

Communications - UHF

Checklist
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in the DAIS Software Standards and was presented in Section

4.3 The fact that a multiple-processor operation exists is

entirely transparent to the programer on the software module

level. The partitioning of the software into multiple pro-

cessors is accomplished by the use of the PALEFAC facility.

4.5.3 Applications Software Architecture

The DAIS Applications Software is structured as a fixed

invocation tree. The software elements in this tree are of

four types:

" System Control Modules - These tasks are responsi-

ble for the control and initialization of the

rest of the applications software tasks.

" Specialist Functions (SPECs) - These modules

accomplish specific computational tasks associated

with one of the functions of navigation, guidance,

weapon delivery or stores management.

* Display Functions (DISPs) - These processors con-

trol the operation of the cockpit displays.

* Equipment Processors (EQUIPs) - These tasks inter-

face with the DAIS sensors and controls.

4.5.3.1 System Control Modules

System Control Modules control and initialize the

applications tasks as follows:

eThe top task in the DAIS Applications invocation

tree is the Master Sequencer. This task schedules

the Configurator, the IMFK/MFK and MMP Request

Processors, and the Master Mode Panel (MMP) lights.

eConfigurator - Controls the operations of the

applications programs (SPECs, DISPs, EQUIPs).
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*Request Processor - Interprets pilot inputs from

the panels, specifically the Master Mode Processor
(MMP), Integrated MultiFunction Keyboard (IMFK),

and MultiFunction Keyboard (MFK).

9 Subsystem Status Monitor - Keeps track of the

3tatus of the avionics subsystems (i.e., equip-

ment).

* IMFK Handler - Services inputs from menu keys

on the IMFK panel.

* MFK Handler - Services inputs from menu keys

on the MFK panel.

4.5.3.2 Specialist Functions (SPECs)

A SPEC is a task that carries out supporting computa-

tional functions associated with a master mode. The differ-

ent SPECs and their definitions are as follows:

eNavigation Computation SPEC - responsible for

keeping track of the aircraft navigation

state (latitude, longitude, wander angle,

altitude, attitude, wind, and velocities),

utilizing information from the Inertial Navi-

gation System (INS), the Air Data Computational

SPEC and the various fixes.

* Air Data Computational SPEC - generates baro-

metric altitude, True Air Speed, calibrated Mach

Number, and static temperature for other compu-

tation SPECs and/or displays utilizing informa-

tion from the air data sensors.

* Guidance Computational SPEC - provides steering

cue data for the displays; in particular, it

positions the flight director to facilitate

steering to waypoints, to a heading, or alti-

tude and during ILS landing.
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* Stores Management SPEC - includes stores setup,
stores inventory maintenance, and weapon release

processing.

* Weapon Delivery SPEC - performs all processing

required for the execution of the Weapon Delivery

mode selected by the pilot, including algorithmic

execution, control of sensors and management of

displays.

4.5.3.3 Equipment Processes (EQUIPs)

EQUIPs are tasks that interface with the DAIS sensors

and controls. Each piece of equipment is communicated with

by one or more input EQUIPs (from the equipment to the soft-

ware) and/or one or more output EQUIPs (from the software

to the equipment).

EQUIPs were introduced into the DAIS software structure

in order to separate the details of communication with equip-

ment from the algorithmic and logical functions performed

by the software. That is, if the details (formats) of an

equipment change, but its function remains the same, then

only the EQUIP software need be modified.

Input EQUIPs receive messages from the external equip-

ment via a remote terminal. These messages are then converted

to internal form. Output EQUIPs read the output from other

processing modules, format the output for the equipment, and

output the data to the external equipment via a remote termi-

nal. The equipments for which EQUIPs have been isolated

include:

* Inertial Navigation System (INS)

* Laser Ranger

*Instrument Landing System (ILS)

* TACAN

*UHF

* Pave Penny

* VATS/Pave Tack
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*Radar Altimeter

*Air Data

*Engine, Fuel, Flaps and Speed Brake Status Systems

*Station Logic Unit (SLU) and Weapon Stations

*Armament Panel

'Data Entry Keyboard

* Sensor Control Unit

4.5.3.4 Display Processes (DISPs)

DISPs are tasks that control the cockpit displays. More

complex displays, Head Up Display (HUD), Vertical Situation

Display (VSD), Horizontal Situation Display (HSD), MultiPurpose

Display (MPD), are generated by the Modular Programmable Dis-

play Generator (MPDG). A DISP receives input from various

mission tasks, formats messages to control the display and

outputs them to the MPDG or the display device through the

remote terminals.

The equipment for which DISPs exist are:

eIntegrated MultiFunction Keyboard (IMFK)

eMaster Mode Panel (MMP)

'MultiFunction Keyboard (MFK)

*Sensor Control Unit (SCU) lights

'MultiProgrammable Display Generator (MPDG)

'Moving Map Device (MMD)

4.5.4 Software Interactions

This section presents examples of the DAIS Software's

interactions between the elements introduced above in Section

4.5.3.

4.5.4.1 IMFK/MFK - Pilot Interface

Most pilot-initiated functions, except those on the

highest level, are activated through the IMFK. Each OPS and each

Brute Force SPEC have one or more associated IMFK pages,
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each of which has up to ten items. By pressing the key asso-

ciated with one of the items on an IMFK page, the pilot may

activate a software function.

There are three types of I?4FK pages: Checklist pages,

Tailored pages, and Brute Force pages. MFK pages are Brute

Force pages.

a. Checklist Pages - This type allows a pilot to complete

a checklist via the 1147K. Each checklist consists of one

or more checklist page(s). There are two types of check-

list pages: those on which every key must be pressed,

and those which allow advancement to the next page by

pressing key 10. Items on these pages are of four types:

1. Check items - The pilot checks the status of some

piece of equipment and presses the key indicating

he checked the item.

2. Data entry items - Each of these items allows the

pilot to change the values of one or more mission

data variables by entering new values through the

Data Entry Xeyboard (DEK).

3. Action Items - These items start or stop various

functions or equipment.

4. Advance page items - These items cause the check-

list to advance to the next page.

Checklists occur during the preflight, cruise, approach

and landing, precision approach, and de-arming phases and

may also be called up through the Checklist Brute Force

SPEC.

b. Tailored Pages - There is one tailored pages associated

with each master mode except Preflight. Each of these

pages allows the pilot to choose several functions rele-

vant to the associated master mode. A tailored page

* remains on the IMFK throughout most of the master mode,

and its items can be chosen at any time. Items on these

pages are either data items or action items.
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C. Brute Force Pages - Several Brute Force pages are asso-

ciated with each Brute Force SPEC. Each group of pages

is part of a tree structure. The highest level page

of a group is displayed. An item chosen on this page

will either cause a function to be carried out, or will

cause a next (2nd) level page to be displayed. An item

chosen on a 2nd level page will either cause a function to

be carried out or a 3rd level page to be displayed. All

items on 3rd level pages will cause functions to be car-

ried out. Thus, as many as four keys may have to be

pressed to invoke a function.

Figure 17 shows the interactions of an IMFK/MFK handler

task with the Request Processor, the DEK EQUIP, and the IMFK

DISPs and the MFK DTSPs. The following sequence of interac-

tions occurs.

The Controller (any OPS or Brute Force SPEC) activates

the IMFK/MFK Page DISPs to display a new IMFK/MFK page.

When an IMFK/MFK menu key is pressed by the pilot,

the Request Processor activates the IMFK/MFK Handler

and passes it the number of the side key. Depending

on the type of item, one of the following sequences

is carried out by the IMFK/MFK Handler.

* Check Item - The IMFK/MFK Handler places a

'checkmark' next to the item to mark the item

as completed.

0 Data Entry Item -

- The IMFK or MFK Lights DISP is activated to

backlight the appropriate key.

- The DEK is activated.

- Input data from the DEK EQUIP is awaited.

If the pilot decides not to enter any data,

he must at least press the DEK ENTER key.

- The pilot's input data is sent from the

DEK EQUIP to the IMFK/MFK Handler.
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Figure 17. IMFK/MFK Interactions
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- The DEK is deactivated.

- If input data were received, various SPECs

DISPs, and EQUIPs that use the data may

be activated and sent the value, and the

the new value is displayed as part of

the IMFK item.

- The IMFK or MFK Lights DISP is activated

to turn off the side key light.

" Action Item - One or more SPECs, DISPs, EQUIPs,

or subtasks are activated to carry out the

desired Function.

" Advance Page Item - When a checklist page is

complete or a brute force item is pressed, the

IMFK or MFK Page DISP is activated to display

the new page.

4.5.4.2 Navigation Interfaces

The Navigation function receives inputs from the naviga-

tion sensor EQUIPs and outputs a set of data (the Navigation

State) to the DISPs, Weapon Delivery and Guidance functions.

Navigation data is typically expressed with respect to

two coordinate frames. The local-level frame is defined as

having its origin at the position of the aircraft, with the

axes located in the plane tangent to the earth's surface and

orthogonal to each other, with the z-axis directed away from

the earth, orthogonal to the tangent plane. The Body (or

Aircraft) frame is defined as having the y-axis point out

the nose of the aircraft, x-axis out the right wing, and the

z-axis orthogonal to the x and y forming a right-handed car-

tesian coordinate system. While these coordinate frame def-

initions are not standardized across the avialable sensors

and software systems currently in use, it has been decided

to make the coordinate definitions above standard to DAIS
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and to convert all sensor input to these standard frames of

reference, and to design all subsystems interfacing with the

Navigation SPEC to these coordinate frame definitions.

4.5.4.3 Normal Attack Interactions

In order to accomplish the Normal Attack sequence, many

elements of software must interact in a controlled manner.

The purpose of this section is to indicate interactions, rather

than to describe the algorithmic processing of the Normal

Attack Controller. The elements conceptually interact as

follows:

eUpon depression of the CCIP/AUTO MMP key, the Config-

urator will schedule and activate the Weapon Delivery

OPS. This is a generic OPS under which one of many

possible bombing modes may be controlled. In this

example, the Weapon Delivery OPS activates the Normal

Attack Controller.

*The Normal Attack Controller (NAC) is responsible for

controlling the sequencing and algorithmic calculations

involved in this mode of Weapon Delivery.

ONAC also sends data to the MPDG DISP so that the

required graphic and numeric data can be displayed.

eThe SCU mode (i.e., LSR) is sent to the SCU Lights

DISP and the SCU Bullpup Controller EQUIP is activated.

Information from this EQUIP is used to drive the

Aiming Reticle as well as the LSR.

eThe Designate Button EQUIP causes NAC to switch

from target acquisition to weapon delivery. This

implies that the FLR RANGE EQUIP must be used to

read the target range so that solution cues can

be generated.
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* Alternate targets, or a refined target position,

may be obtained by using the bullpup controller to

move the AR and FLR. Depression of the Designate

button causes a reinitialization of the Weapon

Delivery processing.

*The SLU EQUIP is activated only when the calculated

time-to-go is less than a preset value, the master

arm is set, and the Armament Release Button (ARB)

is depressed. The event EARB or a Boolean tag is

set by the Armament Release Button EQUIP.

4.5.4.4 Interactions of Input EQUIP Functions

This section describes the generic interactions between

an input EQUIP function (EQUIP), the I/O Compool data (IN),

the task using the sensor data (TASK), the Subsystem Status

Monitor (SSSM), the Configurator, and the display functions

associated with the equipment status (DISP).

The Configurator schedules TASK, EQUIP and the DISP

according to the system configuration requirements. The

basic function of the EQUIP is to read sensor data, reformat

it and place it in the compool. TASK and DISP use reformatted

sensor data as required.

An auxiliary function of EQUIP is to perform equipment

dependent limit checks on the sensor input data. If a data

element is out-of-range, an error message is formulated and

sent to the Subsystem Status Monitor (SSSM). It is the

function of SSSM to count error messages, gather statistics,

and determine when an equipment is to be declared failed.

The input EQUIP signals each potential error. It does not

remember error statistics. All error history is maintained

by the SSSM.
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SECTION V.
DEVELOPING A MISSION

The process of implementing a specific avionics mission

using the DAIS methodology and tools requires both the

development of the software and the simulation and testing

of the software. Both of these aspects will be discussed

below and will be shown to be an outgrowth of the actual

DAIS Mission Software design and standards.

Having discussed the details of the DAIS Executive inter-

face to the Applications Software in Section 4.0, a careful

consideration of how one would like to develop avionics soft-

ware should be taken. An OFP could be broken down into num~er-

ous functional structures. A reasonable breakdown could con-

sist of two major parts; one part the Executive Software and

the other part the Applications Software. In this functional

breakdown the Executive Software can be thought of as that

software resident within the processors that is mission invar-

iant. The Applications Software is that which could change

from mission to mission, i.e., a close air support mission

versus an air superiority mission, or from aircraft to air-

craft, i.e., dependent on the sensors andl subsystems.

If it is accepted that the Executive Software is oper-

ationally mission independent, then to develop a new OFP

should consist of writing Applications Software according to

the mission specifications, describing the equipment suite

1/O interface, and describing the computer network. A Pic-

torial representation of this method is shown in Figure 18.

The specification of synchronous I/O in the figure is a

reasonable and convenient way to provide global information.

Since DAIS is based upon the concept of a federated computer

systems, partitioning of global information is also required.



Considered from this point of view, there are various

characteristics that would be desirable for Mission Software

to have in addition to processor invariance and an automatic

solution to potential data conflicts. A list of such goals

for Applications Software would include:

s Invariance with respect to processor and I/O control

& Invariance with respect to executive implementation

e Invariance with respect to partitioning across

processors

e Invariance with respect to network

*Automatic Multiprocess Synchronization for:

- Date Conflicts

- i/o
- Interprocessor Communications.

If it were possible to achieve these goals, then it would

also be possible to initially develop and debug Applications

Software on a large host computer system with confidence.

In addition, the Applications Programmer would be able to

develop his programs as if he were writing for a single virtual

machine. While choosing a set of executive primitives the

way DAIS has done does not ensure that these goals can be

achieved, the methodology at least facilitates and indeed

encourages such goals.

Figure 18 is accurate for the DAIS system, and the

implementation of the DAIS executive has been such that the

goals for Applications Software have been accomplished. In

DAIS, Applications Software can be developed independent of

the target processor, I/O control characteristics, the details

of the executive, and indeed of the final partitioning across

processors of the federated system. In addition, the imple-

mentation chosen for the Executive is such that Data Conflicts,

I/O, and Interprocessor Communications are automatically handled

without intervuntion of the Applications Programmer.
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The complexity of the required PALEFAC processing is now

seen. Not only must the synchronous I/O and Partitioning in-

formation be provided, but information about both Comsubs and

Tasks are required. The question regarding Task information

is complex. Minimally, it is necessary to obtain the SCHEDULE

statement information in order to generate the Executive Task

Tables. It is also necessary to know about the LOCAL'COPY

declarations in order to both allocate data space, and in

order to generate appropriate interprocessor data transfers

for Compool blocks (if the partitioning information so indi-

cates). Similarly, knowledge of EVENT, CANCEL, and TERMINATE

is required. In order to accomplish this analysis, there is

a tool called the PALEFAC PRE-PROCESSOR that reads an Applica-

tion Software routine and gleans the appropriate Executive

Primitives. The information is stored in a compact manner

on one file.

Figure 19
Building DAIS Mission Software
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The detailed sequence of steps required for building an

avionics mission is as follows:

1. PAF Construction - Once the Comsubs have been implemented

and the Compool blocks have been layed out, the PALEFAC

Auxilliary File (PAF) is constructed. The PAF declares

the size of all the Compool blocks, and the local storage

area needed by each Comsub. The detailed syntax of this

file is given in the PALEFAC User's Guide.

2. Running the PALEFAC Pre-processor - The PALEFAC Pre-pro-

cessor should be run when all applications modules have

been coded and successfully compiled for the target

machine. The pre-processor will produce the PALEFAC

Module Input (PMI) file, which is an additional input to

PALEFAC. The content of the file is a condensed version

of all applications tasks.

3. Compiling Applications Source Code - All applications code

should be translated using the JOVIAL J73/I compiler which

is resident on the DECsystem-10 at AFAL. The mechanism

used for compilation is described in the JOVIAL J73/I pro-

grammers Reference Manual.

4. Running PALEFAC - PALEFAC examines the PMI file produced

by the PALEFAC Pre-processor, and the contents of the PAF

and the PALEFAC Global Input file (PGI). The PGI file

contains information which is global to the entire con-

figuration, such as partitioning information and I/O

control information. The output of PALEFAC is the PALEFAC

Mission Database (PMD) and the PALEFAC Partitioning Infor-

mation (PPI). The PMD files contain all the information

required by the executive for this configuration. The

PPI files are link directives for this configuration.

5. The Executive - From the applications point of view the

executive is already prepared for this configuration.

The DAIS Systems Engineer need only include the reloca-

table files for the executive in the PALEFAC partitioning

section of the PGI to have them configured in the load.
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6. Linking - The linker for the desired target machine is

invoked, provided with the PPI files as input. Exact

details for the operation should be taken from the

Link-lO Programmer's Reference Manual, or the LINKS

Part II Specification.

5.2 Simulations and Testing

The development of the DAIS Mission Software required

the develop.ient of various software simulation and testing

tools in addition to the STS and ITB. Initially, the

STS/ITB were not available, and the restrictive access and

debug capability emphasized the usefulness of a host computer

for simulation and testing.

5.2.1 Simulation Capabilities

one of the fallouts of the development of the DAIS

Executive from the Application Programmer's point of view

was with respect to the ability to test the Application

Software in a convenient and efficient manner. often in the

development of real-time software, and avionics software in

particular, there is but one unique hardware facility avail-

able; the target processor. In addition, projects often have

the hardware system under parallel development along with the

OFP software. Not only do these hardware facilities have

extremely limited tools available to the programmer, but

access is limited to one user at a time. The hardware per-

sonnel also have priority over software development. In

such circumstances, software personnel loose time and produc-

tivity. When the system does become available it has the

characteristics of a unique system with respect to setup,

initialization and tool usage: the programmer must learn

yet another system.

one of the benefits of using a HOL is that the programs

written with the HOL are no longer tied to a given computer

bur rather are portable. It becomes possible to write and
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test routines on another computer, e.g., a large host compu-

ter, thus avoiding the problems of availability and training

on a unique small system. However, real-time programming also

involves the interaction of real-time processes, events,

and time itself. There is seldom a convenient way to -model*

the execution of the target computer on a large host, nor is

there usually time or money to generate a viable simulator.

The avail&-ility of a set of real-time interface primi-
tives alters this situation, by predicating whnat the executive
interface must be, and thus making the Application Software

invariant, not only with respect to the processor but also with

respect to executive implementation. Further, if the process

control for the executive is itself written in a HOL, then this

executive has itself achieved portability. When the executive

is written in a HOL, it becomes extremely simple to have a simu-

lation capability on a host computer, assuming an appropriate

code generator exists.

In the modern world of sophisticated flight processors,

the ability to make effective use of an Interpretive Computer

Simulator (ICS) has lessened. The execution time for the

simulated computer versus the host computer is often several

thousandJ to one. Thus, to simulate one second of target

computer time could take over one thousand seconds: an unten-

able condition for real-time program development.

An alternative to this situation would be to use a State-

ment Level Simulator (SLS). This concept is based upon the

following factors:

*The Program is being written in the specified HOL -

The actual machine code is not being tested, but

rather only the HOL implementation.

' The HOL has a Real-Time Executive Interf ace - This

allows for a method of Application Software invariance

with respect to executive implementation.

117



S A Host and Target Computer situation exists - There

is available a convenient large host computer system

but a relatively inaccessible target computer for

software development.

In this context, it is possible to treat the HOL state-

ment as the basic computation step and to calculate the amount

of time it would require on the target computer. If code is

now generated for the HOL program on the host computer, and

after each statement the "Target Computer Statement Time" is

added to a pseudo-clock, then the program can be executed on

the host computer yielding the target computer timings and

displaying the correct real-time interactions for simulation

purposes. Thus a simulation facility can be provided which

is of the order of two to one real time.

In order to implement the timing characteristics in the

above scheme, compiler cooperation is necessary. HAL/S imple-

mented such a mode of operation, named FSIM, and is currently

in use in the development of the Space Shuttle OFP. JOVIAL

J73/I has also an SLS mode, but this was not operationally

available during the development of the current DAIS Mission

Software.

In lieu of such a simulation capability, a Module Based

Simulator (MBS) approach was used with great success.

This mode of simulation is identical to be the SLS concept

except the statement timings are unavailable. Thus the

MBS runs as if it had an infinitely fast CPU available.

Tasks run until they either complete or are waiting for I/O,

events, or time.

Use of the MBS allowed DAIS Mission Software to be developed

and functioning on the host computer system, the DECsystem-10,

months before the availability of the actual flight computers,

the AN/AYK-15. The usefulness of the method can

be illustrated by the fact that the DAIS weapon delivery soft-

ware was solely developed and tested in the DECsystem-10 and
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then moved to the AN/AYK-15s. This was successfully accom-

plished in less time than two hours even though it involved

a 10,000 word program.

The important fact to emphasize however, is that the

MBS is inherently present under the design methodology used

by the DAIS Executive. The executive primitives themselves

form a simulation control language. Using the HOL and the

Process Control Statements, it is possible to obtain complete

control of the (pseudo) real-time interactions for tracing,

dumping, analysis, and other simulation interactions. An

additional advantage is that the Applications Programmer is

already familiar with the simulation control language: it

is the same language in which he has been programming. An

MBS allows for the (pseudo) real-time development and testing

of OFP's on a host computer independent of the actual flight

systems. By the time the mission Software is to be transferred

to the target machine, logical, algorithmic, data, and real-

time interactions should have been debugged and the program

considered correct. What is left upon transfer to the target

computer is to verify low level interfaces, system saturation

characteristics, and actual system performance.

5.2.2 Simulation Method

Development of OFP's in Higher Order Languages (HOLs) is

an improvement over assembly language methods; however, there

are still many problems associated with OFP development. One

of the most significant problems is lack of availability of

the Flight Computer. A solution would be to have OFP valida-

tion completed prior to Hot Bench Computer (HBC) testing.

Checkout could be made by three different methods. The first

method is to perform module-type checkout where a given set

of inputs to a module result in predetermined outputs. This

type of checkout is very minimal and while providing for the

correctness of a given module, it does not verify the system

interaction. The second type of checkout is performed using
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a complete system which includes both an OFP and simulation

modules. This type of checkout is performed non-real time

and will provide for the checkout of the complete OFP as a

system (with all inputs from the simulated real world and out-

puts to simulated sensors). This will verify correctness

of those items subject to mathematical analysis. The third

method of OFP checkout is an extension of the second method

where a Head Up Display (HUD) is implemented and dynamic inputs

from a cockpit are used. This is the final type of system

checkout before the HBC is used. This is required in order

to assure correctness with respect to visual human factors

(e.g., Bomb fall line).

Each of these three methods of OFP checkout were used for

the DAIS Mission Software. The module type is used as a pre-

liminary test to discover any blatant errors. After the

modules are individually exercised, they are integrated and

the second method is used. Figure 20 indicates the structure

of the second and third method of OFP checkout, and integration

with the models. The second method does not require the use of

the Evans-Sutherland display system or the cockpit. Instead the

cockpit inputs are performed via keyboard input to the DECsystem-

10. However, it should be noted that the OFP inputs from the

models are identical to those that would arrive from the URT when

the OFP is resident in the HBC. This second method assures complete

model and OFP checkout at the systems level. The current simu-

lation method uses the TOMBS simulation facility, the AVSIM

Model Executive, and the DECsystem-lO DDT facility. Data may

be logged from both the models and the OFP for post run analysis.

The third method of checkout allows the programmer to evaluate

the dynamic system interaction of the OFP and the models. The

programmer may view the Evans-Sutherland and verify that the

dynamic displays and logic are performing as desired. Data

may again be logged from the OFP and models for post run

analysis. Thus, for example, Miss and Release calculations

can be evaluated later from their logged values. The current

simulation implementation has a freeze button that will halt
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the models and OFP in order to allow the DDT facility to view

all the Compools in the OFP and all Common blocks in the

models.

As shown in Figure 20, the third method makes use of

the cockpit and the Evans-Sutherland system. Once method

three has been completed, the OFP is cross-compiled for the

HBCs and the final phase of verification is performed.

A further capability to this system is that the input

data to the OFP can be logged on tape, and then later it can

be used as input to the URT when the OFP is resident in the

STS or ITB. A direct comparison of the HBC's output against

the previous DECsystem-10 output will verify accuracy and

validity of the HBC resident OFP.

These techniques not only allow the programmer to progress

through higher levels of testing in a sequence of logical

steps, but they also provide a means of assuring that the

models and the OFP perform together in a prescribed manner.

When the OFP is transferred to the HBC very minimal control

is allowed and very minimal I/O is available for the evaluation

of the model and OFP interactions.
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5.2.3 SIMULATION TOOLS

Simply stated, the object of software testing is to assist

in the development, assure the correctness, and measure the

performance of the software system to be delivered. As the

complexity of a system grows, so does the need for a well-

designed method of proving that the system works.

Just as module-based block-structured programming aids

the coding of large systems by reducing the conceptual com-

plexity to smaller, more manageable problems, a module-based

approach to software testing provides a systematic solution

to the difficult problem of proving system correctness. The

tests should be designed so as to minimize the number of poten-

tial sources of error at any one testing step, thus eliminating

confusion when discrepancies do appear.

Applying this reasoning to the DAIS system, a tour phase

testing process suggests itsslf. The first two phases apply

to individual program modules.

Initially, a module is tested in a static environment,

verifying the response of the module's algorithms to inputs.

Once this test is passed, the module may be subjected to

dynamic tests, verifying its performance within the structure

provided by the local executive (application software) or

other executive routines (executive software).

Intermetrics provided several tools to aid in this pre-

liminary testing. The Level 0 tester (L0GEN) sets up static

tests and generates test reports. The display system requires

its own specialized Level 0 Tester (IMFKT). The TOMBS faci-

lity provides a local executive environment for dynamic module-

based testing. These tools are described below in more detail.

once the modules are individually verified, integration

with the AVSIM simulation may occur, executing both the DAIS

system and the real time environmental simulation on the

DECsystem-lO. This provides all the services of the DECsystem-lO

debugging tools rendering visibility to any problems arising

from this integration step.12
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Finally, the tested DAIS system must be moved to the

ITB. Any problems occurring there may be attributed to the

pecularities of the ITB with confidence that the algorithms

and control structures of DAIS and the DAIS communication with

the real time simulation ire valid.

The testing methodology espoused above therefore consists

of the following sequence:

Level 0: Individual Module static test

Level 1: Individual Module dynamic test with local

executive

Level 2: Integrated DAIS System with Simulator on

DECsystem-10

Level 2A: Full-up System execution on HBC
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5.2.3.1 General Level 0Testing

The DAIS Software Standards enforced the differentiation

between input, output, and update variables. Thus, it was

possible to build a tool which automatically generates a

Level 0 test driver for the DAIS Mission Software Tasks

and COMSUBS.

LOGEN is an automated facility for performing Level 0

tests of individual applications software tasks. It uses the

source file of an applications task to automatically write

a set of test programs and input files for a Level 0 test.

These files are automatically compiled and linked to run

under TOMBS.

The user then executes this load file. The test program

is run interactively on a computer terminal. The user is

requested by the test program to enter a value for each input

variable and event of the task. These values are output to

the task, the task itself is executed, and all output values

of the task are printed on the user's terminal. The output

includes values for all output variables, events, and a list

of any tasks that have been scheduled by the task being tested.

The user may continue running the test as many times as desired.

In subsequent runs, he may reset each input variable or leave

it set to the value at the end of the preceding run.

while the user is inputing variable values and the test

program in outputing values through the terminal, a separate

report file is kept documenting the user's inputs and the

test programs' outputs in printable form. Thus the Level 0

tester allows the user to start with the source file of a

task and generate a test report in a minimal amount of time.

The only entries he must make are the task name and the input

variable values when asked for.
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5.2.3.2 Level 0 Testing of Display Software

IMFKT is similar in concept to L0GEN but has been speci-

alized for testing the OFP Display Software. This tool will

print out the sequence of display messages in visual form

retaining the actual final display image in addition to the

above mentioned Level 0 functions. A report file is also

generated logging all terminal interactions in a printable

form.

5.2.3.3 Level 1 and Level 2 T-esting

TOMBS (Tony's Operational Module-Based Simulator) is a

similation facility executing on the DECsystem-10. TOMBS is

similar to an SLS (Statement Level Simulator) in that it

executes host computer instructions while emulating target

computer (e.g., AN/AYK-15 Processor) programs.

This facility was the primary tool used in conjunction

with AFAL's AVSIM for the initial development and testing of

the navigation and weapon delivery software for the DAIS

Mission Software effort. Upon successful testing in the DEC-

system-10, the transfer to the AN/AYK-15s by recompilation has

proven to be a simple and straightforward process, with the

major source of error being with respect to interface discrep-

ancies.

5.2.3.3.1 TOMBS

TOMBS is a module-based simulator that will allow real

time interaction to occur at the end of each module and/or at

the occurrence of the HOL's real time statements (i.e., execu-

tive interfaces). Therefore, TOMBS presents a simulation faci-

lity that is capable of accurate Real Time Interaction with at

least the fidelity and granularity of the module (task) level.

Its throughput capability will exceed that of an SLS.
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The implementation of TOMBS drives the system with respect

to minor cycle interrupts. TOMBS does not make any assump-

tions with respect to the timing, or the accumulation of

time, by the executing program. New minor cycles are gener-

ated by TOMBS when all Application Tasks are in WAITING or

INACTIVE states. Thus, TOMBS simulates a situation in which

the flight computer is considered to be infinitely fast.

All tasks run to completion in a finite amount of time, and

in particular, in a Minor Cycle.

From the point of view of TOMBS, an Applications Task can

be suspended only at Real Time statements. From the point of

view of the Applications Software, TOMBS is supporting a

time granularity of a Minor Cycle. Note, however, that this

is the finest time granularity allowed and supported for Task

interactions in the DAIS Mission Software System. Only the

time critical output statement TRIGGER allows for a finer

(relative) time granularity in the DAIS Mission Software

System. But the execution of the TRIGGER statement itself

cannot be finer than a minor cycle.

The DAIS Applications Software is to be designed and

built as if it were to reside in a single processor. The fact

that DAIS is a Federated computer system and requires soft-

ware partitioning should be invisible to the Applications

Software. Indeed, a major design emphasis with respect to

the DAIS Executive and Software Standards is precisely that

development methodology.

TOMBS does not in itself implement a specific set of sin-

ulation control facilities. What it does, however, is to

allow the use of the JOVIAL debug and I/O capabilities. In

addition, TOMBS presents a framework in which the user may

write his own control and environmental program which are

then easily associated with the Applications Software to

be tested.

127



5.2.3.3.2 TOMBS and AVSI14

AVSIM consists of a set of avionics models and a structure

for controlling them. This facility is the baseline in use

at AFAL for A-7, A-10, and F-16 simulations. AVSIM is used

in conjunction with the DAIS STS and ITB facilities.

TOMBS has been directly interfaced with AVSIM in order to

allow a total simulation environment for the execution of

mission software. This interfacing presents the same models

and timing interactions as found when executing on the actual

processors in the STS or ITB environment.
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SECTION VI.
MISSION SOFTWARE ILLUSTRATIONS

During the three and a half year duration of the DAIS

Mission Software program, the mission software and the DAIS

program itself continued to evolve and assume new capabili-

ties and directions. Part of this evolution arose in response

to other Air Force programs. The changes to the DAIS Mission

Software as a result of this evolution illustrates the capa-

bility of the basic design and methodology to quickly respond

to dynamic revisions to requirements.

This section will discuss some of these developments and

the ability of the DAIS Mission Software to respond.

6.1 Mission A to Mission a

With the evolution of the DAIS program, the baseline

A-7 aircraft mission was redesignated to be an A-10 mission,

In addition, the actual equipment suite was modified with

respect to both sensors and the inertial system. This, of

course, had a corresponding effect upon the control and

display requirements.

In Section 4.5 of this report, the structuring of the

Application Software was discussed. When the change was made

from the A-7 based Mission A to the A-10 based Mission a,

the baseline OFP had to be modified. The structural nature

of the Application Software in each of its functional areas:

control programs; navigation, guidance and control; weapon

delivery; stores management; pilot interface; and equipment

interfaces; allowed for rapid and reliable modification to

the new mission and its requirements.

An example of the modifications required can be seen in

the navigation, guidanceand control functions. Navigation

was structured initially on DAIS for Mission A to include
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all the functions necessary for maintenance of an inertial

platform. This included processing accelerometer outputs

supplying gyro torquing, and performing ground alignments.

With the purpose of providing a system which would con-

tain all the capabilities of the existing A-7 OFP, Navigation

was able to use observables from the Doppler radar to achieve

in-flight alignment, baro-altimeter data for veritcal channel

damping, and contained fault-down logic if one or more of the

sensors failed. The original navigation function also provided

air-data and winds computation as well as position updates

and aircraft attitude processing.

When DAIS was re-directed to use the SKN-2416 Inertial

Navigation System for Mission a, much of the navigation was

rendered unnecessary, as the INS did internal accelerometer,

gyro, and alignment maintenance. The necessary software modi-
fications were very minimal, however. Due to the block-struc-

ture of the navigation function, the unnecessary portions of

the OFP were simply removed, leaving the functions of position,

air-data, winds, and attitude processing virtually unchanged.

The simplicity with which the modification was made is indica-

tive of the value of the layered modular software approach.

The Guidance function had been structured in a similar

fashion. Modules for different modes of horizontal and ver-

tical guidance were made with no significant modifications

to the algorithmic content of existing software. Changes

occurred only in the controlling and moding logic of the

Steering controller.

6.2 Non-DAIS Device Protocol

Early in the DAIS program, AFAL decided to interface

its system to the ADTC Stores Logic Units (SLU) for the Stores

Management System. The SLU interface design, however, did

not follow the DAIS MIL-STD 1553A protocol in detail. Initi-

ally, this was treated as a special condition in the I/O

handling.
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Associated with the modification of the mi.ssion for DAIS,

was the introduction of the SKN-24l6 inertial system. While

this system is used on the F-16 and interfaces with a MIL-STD

1553 type protocol, it does not use the DAIS protocol in

detail. The Single Seat Attack (SSA) program at the time was

also based upon an A-10 and had selected a SKN1-2416 inertial

* unit for its system. The SSA program also chose to use the

DAIS Executive systemn and methodology for its Mission Software

development.

In addition to not following the DAIS MUX protocol, the

SKN-2416 required the ability for the application software

to read the device whenever it wanted. Previously, I/0 was

either read to the Application Software in an Asynchronous

periodic manner, or asynchronously when the device indicated

it needed to be read. As a result of the above requirement,

the DAIS Software System was extended to be able to handle

(1) Non-standard Avionics (i.e., different protocols), and

(2) Application Software Asynchronous device reads.

Non-Standard devices, in the context of DAIS, are those
devices capable of communication over a MIL-STD 1553A bus but

which do not conform exactly to the DAIS Remote Terminal (RT)

communications protocol. Since the DAIS Bus Control Executive

was designed to communicate with DAIS compatible Remote Terminals

only, modifications were required to support such non-standard

devices. Three components of DAIS Executive Software were

affected by the required modification: PALEFAC, the Local

Executive, and the Bus Control Master Executive.

The capability of an applications task to asynchronously

read data from a terminal connected to the bus departs from

the baseline DAIS system philosophy in that terminals coi~nected

to the bus may only asynchronously transmit when they wish to,

never on demand. When an applications task reads a data block, it

only accesses the last updated version of the data from the pro-

cessor' s memory, and in no way forces a transmission from the

related device.
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Since the new capability differed radically from the

previous concept of READ, a new real-time lin~guistic primi-

tive to perform the operation was invented, entitled FORCE'READ.
This primitive would make a special request to the

bus control to update the Compool block argument by forcing

a transmission from its associated terminal. The Local

Executive would then place the issuing task into a wait state

until the Compool block was updated. This time suspension was

required due to the time lag involved in bus transmissions.

This augmentation to the real-time Applications/Executive

interface required modifications to PALEFAC for the recogni-

tion of the new primitive. Appropriately revised table con-

structions and corresponding local Executive interface routines

were created as a result of the modification.

6.3 Throughput Optimization

The rigidity of the Higher Order Software (HOS) principles

insures that real-time data conflicts can not exist. The imple-

mentation of these principles requires double buffering of

data to achieve this condition. Global information is read

into a local copy, which is manipulated, and finally the local

copy may be written back to the global copy. The reading or

writing of these copies occur as a complete function that can-

not be interrupted by other data moves. (Although hardware

interrupts can occur, data interface is not allowed.) While

this method of preventing data conflicts works, it obviously

entails a high execution time penalty.

one of the first modifications to HOS principles was the

introduction of a GLOBAL'COPY data declaration along with the

associated ACCESS and BROADCAST real-time statements. These

three primitives correspond to the LOCAL'COPY declaration and

the READ and WRITE statements. However, with the GLOBALICOPY

mechanism, access to the actual global data is allowed without

the double buffering. in order to ensure that reliability is

maintained, these global primitives may only occur in the
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highest priority processes, and thus non-interruptable tasks,
that is these new declarations and statements, may only occur

in PRIVILEGED'MODE'TASKS which are short and non-interruptible

tasks.

While these restrictions prevent data conflicts, the

majority of tasks still use the LOCAL'COPY, READ and WRITE

primitives. It is possible, however, to analyze and under-

stand possible data conflicts and to ensure that

data blocks cannot have such conflicts. Therefore, a new

construct, the LOCAL'COPY'OVERRIDE directive, was introduced

as an effeciency capability to be used only with care. The

use of this directive, effectively modifies the code to behave

in the same manner as the new global primitives while still

being written as LOCAL'COPY, READ and WRITE. It was used both

by the SSA program and by the DAIS Weapon Delivery Software

in its two processor demonstration. When used in a careful

and knowing fashion, the directive can be of assistance. But

it also assumes an a priori guaranteed data conflict preven-

tion mechanism and cannot be used indisciminately.

6.4 Proof of Concept

The DAIS Mission Software was developed and tested pri-

marily on the host computer, the DECsystem-10. Only after

the Mission Software was developed, simulations completed and

integrity assumed was the Mission Software placed on the flight

processors, the AN/AYK-15s. The initial Mission A Application

Software and Local Executive were developed in their entirety

on the DECsystem-10 before the physical AN/AYK-15s arrived

at AFAL. While the framework of the Master Executive's bus

control existed, it required testing of the AN/AYK-15 hardware
interfaces to assure proper functioning. The not unusual situ-

ation of limited target computer access, few support tools,

and continued system hardware integration prevented the full

use of the DAIS STS and ITB during this effort.
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Throughout the DAIS Mission Software efforts approximately

75% of the debugging and testing of the Local and Master

Executives was accomplished on the DECsystem-10, with only

the final processor and I/O interfaces, and virtual timing being

of necessity performed e- the actual AN/AYK-15 system. When

the full weapon delivery capability of Mission a was developed,

the effort was done on the DECsystem-10 using the old AFAL

F-ill cockpit and displays. Not only were the logical and

algorithmic capabilities debugged and tested, but the necessary

visual weapon delivery human factors were verified before

moving to the AN/AYK-15 processors and DAIS cockpit. The

moving of this software and its integration into the target

processor environment was accomplished in less than two days.

This included recompilation of the programs, relinking, parti-

tioning, and integration into the STS.

One of the most dramatic demonstrations of the DAIS

Mission Software capability was the repartitioning of Mission a

from a two processor demonstration into a three processor par-

titioned demonstration. This was accomplished in two hours.

The philosophy and methodology of the development of the

Applications Software with the basic design of the Executive

System, allowed this base for simplified software integration.

6.5 Use of J73/I

one of the objectives of the DAIS Mission Software effort

was to use the Higher Order Language J73/I for the avionics

software. The Application Software was successfully written

using J73/I as controlled by the DAIS Software Standards. It

was expected that 100% of the Application Software could be

written in J73/I and this was accomplished. Certain data

packing and unpacking routines could have been written in a

more efficient manner in assembly code. Part of the reason

for this was the fact that J73/I (as implemented on the AN/

AYK-15 flight processor) only supported 16 bit integers rather

than the 32 bit integers available on the processor hardware.

Thus certain of the data manipulation became cumbersome in J73/I.
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The DAIS Local Executive is responsible for interfacing

with the Application Programmer. As such it provides not only

process control, but also presents the interface for data

handling and the I/O control. The Local Executive could be

thought of as a set of services that modify the process state

database by Application Software request.

The DAIS Local Executive was written 95% in J73/I with

only three functions being coded in assembly code. These

three functions are:

*The actual I/O instruction.

eThe Interrupt Interf ace.

*The process swapping.

In each of these three cases, the feature to be executed is

not conceptually supported by J73/I or other conmmon HOLs, but

are dependent upon hardware idiosyncrasies.

The DAIS Master Executive is concerned with Minor Cycle

synchronization, message processing, and bus failure control.

The messages may be either synchronous, asynchronous, or

critically-timed, i.e., messages for the special TRIGGER

statement. Over 90% of the Master Executive was written in

J73/I. As was the case with the local executive, assembly

code was logically required for the hardware and I/O interfaces.

The J73/I compiler implementation used in DAIS was not

highly optimized, but the Mission Software functions implemented

mapped well into the J73/I language. Thus the efficiency of

code generation becomes a question of the J73/I language mapping

into a particular instruction set.

6.6 Embedded Performance Monitor

An embedded performance monitor (EPM) was implemented

as an optional feature of the DAIS Executive. The motivations

for such a tool were several. A requirement existed for a

performance monitor embedded within the Executive itself.

These requirements included:
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e Software to provide constant monitoring without

specific manual intervention.

* Software tailored to produce the desired results

directly instead of trying to cull the information

from massive post-run dump files.

eThe Software that can perform this function in the

absence of sophisticated debugging facilities, such

as at field sites or even during flight.

* Performance parameters that would supply a uniform

terminology for evaluating performance and as such

fit in with the standardization effort promoted

by DAIS.

While being directly embedded in the DAIS Executive, the-

Embedded Performance Monitor (EPM) is an optional element

selected by conditional compilation features. Within the EPM

in turn, various options are available to control the extent

of monitoring to be performed. The option consists of three

levels of information. These are:

1. Global Information - Measurements included in this area

include total Executive, Applications, and Idle execution

time.

2. Functional Area Information -

a. Interrupt processing time, number of interrupts.

b. Bus control time.

C. Bus throughput data:

i. number of messages

ii. estimated DMA conflict percentage

d. Task control time (count of real-time operations).

e. Timer control time (minor cycle setup, critically

timed messages).

f. Application task execution time.

g. other specific functional areas as desired.
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3. Module Information - Measures timing for each module

desired.

The above statistics can be measured and averaged over

any duration. They supply data for the purposes of evaluating

benchmarks or actual OFP performance. The overhead introduced

by performance monitoring itself can be cancelled by halting

the clock during performance processing. When real-time use

is required, clock stopping cannot occur, but time spent in

performance monitoring can be tallied separately from all

other categories.
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SECTION VII.
CONCLUSION AND RECOMMENDATIONS

The DAIS Mission Software was successfully developed and it

demonstrated and proved that the use of modern software tech-

niques and reliability concepts are effective in the rigorous

environment of avionics. The capabilities of J73/I as a
real-time programming language has been demonstrated and

upward compatible real-time linguistic constructs for use

with J73/I have been identified. The use of modern techniques

has allowed the development of easily partitionable mission

software. Indeed the Mission Software was developed as a

single virtual system and then partitioned as desired.

Finally, the real-time interface allowed the efficient and

cost-effective use of simulation techniques.

RECOMMENDATIONS

The achievement of the DAIS Mission Software has opened

avenues for further development and refinement. The follow-

ing cunstitutes a list of items requiring further development

or refinement and several recommiendations:

*One of the major drawbacks in the software community

acceptance of the DAIS Executive is the question

of time and space efficiency. In order to be accepted

by a broad based community, it is necessary to maintain

the efficiency of the DAIS system without interfering

with the inherent reliability of its development

approach and without increasing the complexity of its

interface from the Applications Software point of view.

In particular, an improved implementation of data blocks

(READ/WRITE) must be addressed. The proper method of

optimization would be the use of PALEFAC for the anal-

ysis of conflict situations. This area represents a

new stage of technology.
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* The ground work and preliminary design for a concept

of Monitor Recovery has been laid. These efforts

should be implemented and demonstrated. It is

important to maintain the philosophy of creating

a framework in which missions are easily developed and
OFPs are modifiable in a cost effective manner.

*Improvements to the current Mission Software Build

process are required. In particular, the relation-

ship between PALEFAC, the PALEFAC Pre-processor, and

the Application modules and Compools need to be

improved by automating the necessary creation and

transitioning of information.

* PALEFAC provides a central repository of information.

While it has always been intended for PALEFAC to

analyze this information for diagnostics, statistics

and enforcement of coding standards, this has as of

yet been done only to a small degree. This should

be pursued in order to fully develop the tool and

in order to provide useful statistics for future

Air Force efforts.

Perhaps the one area that has not yet been fully appre-

ciated in the DAIS program is the generality of the DAIS

software system.

Current avionics systems such as the F-16 or F-18 are

actually federated computer systems with many large and small

computers. While the F-16 is advertised as having one Fire

Control Computer, it also contains processors in its radar,

HUD, and other subsystems.

Once DAIS has been retargeted to systems other than the

AN/AYK-15, it will be possible to accommodate mixed systems

of processors within the DAIS federated scheme. To ensure a

reasonable and desirable goal the required interfaces must
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match. Since J73/I is the linguistic expression of DAIS on

a high level, it only becomes necessary to ensure compatibility

on the low level. This implies:

e Use of the same (compatible) data bus and protocol

* Identical organization and structure of Interprocessor

messages

* Invariant floating point format between processors

(e.g., 48-bit representation: 16 bit exponent and

32 bit mantissa in 2s complement notation.)

By requiring this compatibility for all versions of the

Executive/PALEFAC it will become possible to execute the same

PALEFAC input with the same set of Applications Software on

each version of PALEFAC to obtain compatible load modules

for differing processors.

In the same vein even small processors (8080s, 6800s)

for which J73/I code generators exist, can be centrally developed

and then partitioned out by PALEFAC. In this case, the target

processors would not have a full executive capability. But

the advantages of a central development and control would be

realized. This concept is important in the context of the

emerging and growing use of microprocessors in avionic systems

and the associated development of distributive processing.

Thus the distinction between central processors and remote

subsystems would cease to be one of software versus hardware

functions.

The applicability of the DAIS Software system to mixed

processors of varying types and sizes should be demonstrated

in the context of central software development and/or control.

The current DAIS Software system forms a baseline that is

easily extended in this direction.

With the DAIS Mission Software, it is possible to transi-

tion more than techniques and methodology. It is possible

also to transition the support tools and the avionics executive.
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Because of this capability, it becomes extremely critical

for the Executive to be designed, implemented, and verified

in such a fashion as to both claim and receive user accep-

tance. Major life cycle cost savings are realizable by stan-

dardizing the Executive/Application Software interface. If

this interface (the real-time constructs) are standardized,

then it is relatively straightforward to build or retarget

a DAIS executive for various avionics computers or I/0

structures.

If the Real-Time interface were to be accepted by the
Air Force as a standard it would no longer be possible to

continue major developments or modifications. It is imper-
ative that all major outstanding issues be resolved in a

timely fashion while maintaining system reliability and

integrity.
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